15 resultados para Dielectric contrasts
em CentAUR: Central Archive University of Reading - UK
Resumo:
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30-min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric-based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Soil moisture content, theta, of a bare and vegetated UK gravelly sandy loam soil (in situ and repacked in small lysimeters) was measured using various dielectric instruments (single-sensor ThetaProbes, multi-sensor Profile Probes, and Aquaflex Sensors), at depths ranging between 0.03 and I m, during the summers of 2001 (in situ soil) and 2002 (mini-lysimeters). Half-hourly values of evaporation, E, were calculated from diurnal changes in total soil profile water content, using the soil water balance equation. For the bare soil field, Profile Probes and ML2x ThetaProbes indicated a diurnal course of theta that did not concur with typical soil physical observations: surface layer soil moisture content increased from early morning until about midday, after which theta declined, generally until the early evening. The unexpected course of theta was positively correlated to soil temperature, T-s, also at deeper depths. Aquaflex and ML1 ThetaProbe (older models) outputs, however, reflected common observations: 0 increased slightly during the night (capillary rise) and decreased from the morning until late afternoon (as a result of evaporation). For the vegetated plot, the spurious diurnal theta fluctuations were less obvious, because canopy shading resulted in lower amplitudes of T-s. The unrealistic theta profiles measured for the bare and vegetated field sites caused diurnal estimates of E to attain downward daytime and upward night-time values. In the mini-lysimeters, at medium to high moisture contents, theta values measured by (ML2x) ThetaProbes followed a relatively realistic course, and predictions of E from diurnal changes in vertically integrated theta generally compared well with lysimeter estimates of E. However, time courses of theta and E became comparable to those observed for the field plots when the soil in the lysimeters reached relatively low values of theta. Attempts to correct measured theta for fluctuations in T, revealed that no generally applicable formula could be derived. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The extraction of design data for the lowpass dielectric multilayer according to Tschebysheff performance is described. The extraction proceeds initially by analogy with electric-circuit design, and can then be given numerical refinement which is also described. Agreement with the Tschebysheff desideratum is satisfactory. The multilayers extracted by this procedure are of fractional thickness, symmetric with regard to their central layers.
Resumo:
The first measurement of the relative permittivity (εr) and loss tangent (tan δ) of EPON™ SU-8 advanced thick film ultraviolet photoresist is reported at frequencies between 75–110 GHz (W-band). The problems associated with such a measurement are discussed, an error analysis given, and values of εr=1.725±0.08 and tanδ =0.02±0.001 are determined.
Resumo:
Dielectric properties of 16 process cheeses were determined over the frequency range 0.3-3 GHz. The effect of temperature on the dielectric properties of process cheeses were investigated at temperature intervals of 10 degrees C between 5 and 85 degrees C. Results showed that the dielectric constant decreased gradually as frequency increased, for all cheeses. The dielectric loss factor (epsilon") decreased from above 125 to below 12 as frequency increased. epsilon' was highest at 5 degrees C and generally decreased up to a temperature between 55 and 75 degrees C. epsilon" generally increased with increasing temperature for high and medium moisture/fat ratio cheeses. epsilon" decreased with temperature between 5 and 55 degrees C and then increased, for low moisture/fat ratio cheese. Partial least square regression models indicated that epsilon' and epsilon" could be used as a quality control screening application to measure moisture content and inorganic salt content of process cheese, respectively. (c) 2005 Elsevier Ltd. All rights reserved..
Resumo:
This study is concerned with a series of acrylate based side-chain liquid crystalline (LC) polymers. Previous studies have shown that these LC polymers have a preference for parallel or perpendicular alignment with respect to the polymer chain which depends on the length of the coupling chain joining the mesogenic unit to the polymer backbone. On the other hand, the dielectric relaxation of these side-chain LC polymers shows a strong relaxation associated to the mesogenic unit dynamics. For samples with parallel alignment, it was found that the dielectric relaxation of the nematic is weaker and broader than the relaxation of the isotropic. By contrast, for samples with perpendicular alignment, the isotropic to nematic transition reduces the broadening the relaxation and increases the relaxation strength. These two features are more evident for samples with short coupling units for which the dielectric relaxation observed appears to be strongly coupled with the backbone dynamics.
Resumo:
We discuss the modeling of dielectric responses for an electromagnetically excited network of capacitors and resistors using a systems identification framework. Standard models that assume integral order dynamics are augmented to incorporate fractional order dynamics. This enables us to relate more faithfully the modeled responses to those reported in the Dielectrics literature.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.