4 resultados para Design imaging
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background and Purpose-Clinical research into the treatment of acute stroke is complicated, is costly, and has often been unsuccessful. Developments in imaging technology based on computed tomography and magnetic resonance imaging scans offer opportunities for screening experimental therapies during phase II testing so as to deliver only the most promising interventions to phase III. We discuss the design and the appropriate sample size for phase II studies in stroke based on lesion volume. Methods-Determination of the relation between analyses of lesion volumes and of neurologic outcomes is illustrated using data from placebo trial patients from the Virtual International Stroke Trials Archive. The size of an effect on lesion volume that would lead to a clinically relevant treatment effect in terms of a measure, such as modified Rankin score (mRS), is found. The sample size to detect that magnitude of effect on lesion volume is then calculated. Simulation is used to evaluate different criteria for proceeding from phase II to phase III. Results-The odds ratios for mRS correspond roughly to the square root of odds ratios for lesion volume, implying that for equivalent power specifications, sample sizes based on lesion volumes should be about one fourth of those based on mRS. Relaxation of power requirements, appropriate for phase II, lead to further sample size reductions. For example, a phase III trial comparing a novel treatment with placebo with a total sample size of 1518 patients might be motivated from a phase II trial of 126 patients comparing the same 2 treatment arms. Discussion-Definitive phase III trials in stroke should aim to demonstrate significant effects of treatment on clinical outcomes. However, more direct outcomes such as lesion volume can be useful in phase II for determining whether such phase III trials should be undertaken in the first place. (Stroke. 2009;40:1347-1352.)
Resumo:
It is demonstrated that distortion of the terahertz beam profile and generation of a cross-polarised component occur when the beam in terahertz time domain spectroscopy and imaging systems interacts with the sample under test. These distortions modify the detected signal, leading to spectral and image artefacts. The degree of distortion depends on the optical design of the system as well as the properties of the sample.
Resumo:
Background Major depressive disorders (MDD) are a debilitating and pervasive group of mental illnesses afflicting many millions of people resulting in the loss of 110 million working days and more than 2,500 suicides per annum. Adolescent MDD patients attending NHS clinics show high rates of recurrence into adult life. A meta-analysis of recent research shows that psychological treatments are not as efficacious as previously thought. Modest treatment outcomes of approximately 65% of cases responding suggest that aetiological and clinical heterogeneity may hamper the better use of existing therapies and discovery of more effective treatments. Information with respect to optimal treatment choice for individuals is lacking, with no validated biomarkers to aid therapeutic decision-making. Methods/Design Magnetic resonance-Improving Mood with Psychoanalytic and Cognitive Therapies, the MR-IMPACT study, plans to identify brain regions implicated in the pathophysiology of depressions and examine whether there are specific behavioural or neural markers predicting remission and/or subsequent relapse in a subsample of depressed adolescents recruited to the IMPACT randomised controlled trial (Registration # ISRCTN83033550). Discussion MR-IMPACT is an investigative biomarker component of the IMPACT pragmatic effectiveness trial. The aim of this investigation is to identify neural markers and regional indicators of the pathophysiology of and treatment response for MDD in adolescents. We anticipate that these data may enable more targeted treatment delivery by identifying those patients who may be optimal candidates for therapeutic response.
Resumo:
Currently, infrared filters for astronomical telescopes and satellite radiometers are based on multilayer thin film stacks of alternating high and low refractive index materials. However, the choice of suitable layer materials is limited and this places limitations on the filter performance that can be achieved. The ability to design materials with arbitrary refractive index allows for filter performance to be greatly increased but also increases the complexity of design. Here a differential algorithm was used as a method for optimised design of filters with arbitrary refractive indices, and then materials are designed to these specifications as mono-materials with sub wavelength structures using Bruggeman’s effective material approximation (EMA).