58 resultados para Density-Functional Theory

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the ligational behavior of the neutral bidentate chelating molecule 2-(3,5-dimethyl pyrazol-1-yl) benzothiazole towards the oxomolybdenum(V) center. Both mononuclear complexes of the type (MoOX3L)-O-V and binuclear complexes of the formula (Mo2O4X2L2)-O-V (where X = Cl, Br) are isolated in the solid state. The complexes are characterized by elemental analyses, various spectroscopic techniques (UV-Vis IR), magnetic susceptibility measurement at room temperature, and cyclic voltammetry for their redox behavior at a platinum electrode in CH3CN. The mononuclear complexes (MoOX3L)-O-V are found to be paramagnetic while the binuclear complexes Mo2O4X2L2 are diamagnetic. Crystal and molecular structure of the ligand and the dioxomolybdenum complex (MoO2Br2L)-O-VI (obtained from the complex MoOBr3L during crystallization) have been solved by single crystal X-ray diffraction technique. Relevant DFT calculations of the ligand and the complex (MoO2Br2L)-O-VI are also carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of a density functional theory (DFT) investigation of the surfaces of rutile-like vanadium dioxide, VO2(R). We calculate the surface energies of low Miller index planes, and find that the most stable surface orientation is the (110). The equilibrium morphology of a VO2(R) particle has an acicular shape, laterally confined by (110) planes and topped by (011) planes. The redox properties of the (110) surface are investigated by calculating the relative surface free energies of the non-stoichiometric compositions as a function of oxygen chemical potential. It is found that the VO2(110) surface is oxidized with respect to the stoichiometric composition, not only at ambient conditions but also at the more reducing conditions under which bulk VO2 is stable in comparison with bulk V2O5. The adsorbed oxygen forms surface vanadyl species much more favorably than surface peroxo species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of cobalt in mixed metal carbonates is a possible route to the immobilization of this toxic element in the environment. However, the thermodynamics of (Ca,Co)CO3 solid solutions are still unclear due to conflicting data from experiment and from the observation of natural ocurrences. We report here the results of a computer simulation study of the mixing of calcite (CaCO3) and spherocobaltite (CoCO3), using density functional theory calculations. Our simulations suggest that previously proposed thermodynamic models, based only on the range of observed compositions, significantly overestimate the solubility between the two solids and therefore underestimate the extension of the miscibility gap under ambient conditions. The enthalpy of mixing of the disordered solid solution is strongly positive and moderately asymmetric: calcium incorporation in spherocobaltite is more endothermic than cobalt incorporation in calcite. Ordering of the impurities in (0001) layers is energetically favourable with respect to the disordered solid solution at low temperatures and intermediate compositions, but the ordered phase is still unstable to demixing. We calculate the solvus and spinodal lines in the phase diagram using a sub-regular solution model, and conclude that many Ca1-xCoxCO3 mineral solid solutions (with observed compositions of up to x=0.027, and above x=0.93) are metastable with respect to phase separation. We also calculate solid/aqueous distribution coefficients to evaluate the effect of the strong non-ideality of mixing on the equilibrium with aqueous solution, showing that the thermodynamically-driven incorporation of cobalt in calcite (and of calcium in spherocobaltite) is always very low, regardless of the Co/Ca ratio of the aqueous environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligands PhL and MeL are obtained by condensing 2-formylpyridine with benzil dihydrazone and diacetyl dihydrazone, respectively, in 2: 1 molar proportion. With silver( I), PhL yields a double-stranded dinuclear cationic helicate 1 in which the metal is tetrahedral but MeL gives a cationic one-dimensional polymeric complex 2 where silver( I) is distorted square planar and the ligand backbone is nearly planar. In both complexes, metal: ligand ratio is 1: 1. Ab initio calculations on the ligands at the HF/6-31+G* level reveal that while PhL strongly prefers a helical conformation, MeL has a natural inclination to remain in a planar conformation. Density functional theory calculations on model silver( I) complexes show that formation of the linear polymer in the case of MeL is also an important factor in imposing the planar geometry of Ag(I) in 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The product of the Asinger reaction between elemental sulfur, n-butylamine and acetophenone is 8-(n-butylaminophenylmethyliden)-1,2,3,4,5,6,7-heptathiocane which contains a CS7 ring. A combination of infrared, Raman and inelastic neutron scattering spectroscopies with periodic density functional theory calculations is used to provide a complete assignment of the vibrational spectra of this unusual species. The similarity between the Raman spectra of the compound and that of elemental sulfur is particularly striking. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion of Ti through the TiO2 (110) rutile surface plays a key role in the growth and reactivity of TiO2. To understand the fundamental aspects of this important process, we present an analysis of the diffusion of Ti adspecies at the stoichiometric TiO2(110) surface using complementary computational methodologies of density functional theory corrected for on-site Coulomb interactions (DFT+U) and a charge equilibration (QEq) atomistic potential to identify minimum energy pathways. We find that diffusion of Ti from the surface to subsurface (and vice versa) follows an intersticialcy exchange mechanism, involving exchange of surface Ti with the 6-fold coordinated Ti below the bridging oxygen rows. Diffusion in the subsurface between layers also follows an interstitialcy mechanism. The diffusion of Ti is discussed in light of continued attempts to understand the re-oxidation of non-stoichiometric TiO2(110) surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed the first completely ab initio lattice dynamics calculation of the full orthorhombic cell of polyethylene using periodic density functional theory in the local density approximation (LDA) and the generalized gradient approximation (GGA). Contrary to current perceptions, we show that LDA accurately describes the structure whereas GGA fails. We emphasize that there is no parametrization of the results. We then rigorously tested our calculation by computing the phonon dispersion curves across the entire Brillouin zone and comparing them to the vibrational spectra, in particular the inelastic neutron scattering (INS) spectra, of polyethylene (both polycrystalline and aligned) and perdeuteriopolyethylene. The F-point frequencies (where the infrared and Raman active modes occur) are in good agreement with the latest low temperature data. The near-perfect reproduction of the INS spectra, gives confidence in the results and allows Lis to deduce a number of physical properties including the elastic moduli, parallel and perpendicular to the chain. We find that the Young's modulus for an infinitely long, perfectly crystalline polyethylene is 360.2 GPa at 0 K. The highest experimental value is 324 GPa, indicating that current high modulus fibers are similar to 90% of their maximum possible strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared intensities of the fundamental, overtone and combination transitions in furan, pyrrole and thiophene have been calculated using the variational normal coordinate code MULTIMODE. We use pure vibrational wavefunctions, and quartic force fields and cubic dipole moment vector surfaces, generated by density functional theory. The results are compared graphically with second-order perturbation calculations and with relative intensities from experiment for furan and pyrrole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio calculations using density functional theory have shown that the reactions that occur between artemisinin, 1, a cyclic trioxane active against malaria, and some metal ions and complexes lead to a series of radicals which are probably responsible for its therapeutic activity. In particular it has been shown that the interaction of Fe(H) with artemisinin causes the O-O bond to be broken as indeed does Fe(III) and Cu(I), while Zn(II) does not. Calculations were carried out with Fe(II) in several different forms including the bare ion, [Fe(H2O)(5)](2+) and [FeP(Im)] (P, porphyrin; Im, imadazole) and similar results were obtained. The resulting oxygen-based radicals are readily converted to more stable carbon-based radicals and/or. stable products. Similar radicals and products are also formed from two simple model trioxanes 2 and 3 that show little or no therapeutic action against malaria although some subtle differences were obtained. This suggests that the scaffold surrounding the pharmacophore may be involved in molecular recognition events allowing efficient uptake of this trioxane warhead into the parasite. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used synchrotron-based high-resolution X-ray photoelectron spectroscopy in combination with ab initio density functional theory calculations to investigate the characteristics of water and CO adsorption on the bimetallic Cu/Pt{110}-(2 x 1) surface at a Cu coverage near 0.5 ML. Cu fills the troughs of the reconstructed clean surface forming nanowires, which are stable up to 830 K. Their presence dramatically influences the adsorption of water and CO. Water adsorption changes from intact to partially dissociated while the desorption temperature of CO on this surface increases by up to 27 K with respect to the clean Pt{110} surface. Ab initio calculations and experimental valence band spectra reveal that the Cu 3d-band is narrowed and shifted upward with respect to bulk Cu surfaces. This and electron donation to surface Pt atoms cause the increase in the bond strength between CO and the Pt surface atoms. The pathway for water dissociation occurs via Cu surface atoms. The heat of adsorption of water bonding to Cu surface atoms was calculated to be 0.82 eV, which is significantly higher than on the clean Pt{110} surface; the activation energy for partial dissociation is 0.53 eV (not corrected for zero point energy).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.