2 resultados para Deep basin

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of coupled atmosphere–ocean–ice aquaplanet experiments is described in which topological constraints on ocean circulation are introduced to study the role of ocean circulation on the mean climate of the coupled system. It is imagined that the earth is completely covered by an ocean of uniform depth except for the presence or absence of narrow barriers that extend from the bottom of the ocean to the sea surface. The following four configurations are described: Aqua (no land), Ridge (one barrier extends from pole to pole), Drake (one barrier extends from the North Pole to 35°S), and DDrake (two such barriers are set 90° apart and join at the North Pole, separating the ocean into a large basin and a small basin, connected to the south). On moving from Aqua to Ridge to Drake to DDrake, the energy transports in the equilibrium solutions become increasingly “realistic,” culminating in DDrake, which has an uncanny resemblance to the present climate. Remarkably, the zonal-average climates of Drake and DDrake are strikingly similar, exhibiting almost identical heat and freshwater transports, and meridional overturning circulations. However, Drake and DDrake differ dramatically in their regional climates. The small and large basins of DDrake exhibit distinctive Atlantic-like and Pacific-like characteristics, respectively: the small basin is warmer, saltier, and denser at the surface than the large basin, and is the main site of deep water formation with a deep overturning circulation and strong northward ocean heat transport. A sensitivity experiment with DDrake demonstrates that the salinity contrast between the two basins, and hence the localization of deep convection, results from a deficit of precipitation, rather than an excess of evaporation, over the small basin. It is argued that the width of the small basin relative to the zonal fetch of atmospheric precipitation is the key to understanding this salinity contrast. Finally, it is argued that many gross features of the present climate are consequences of two topological asymmetries that have profound effects on ocean circulation: a meridional asymmetry (circumpolar flow in the Southern Hemisphere; blocked flow in the Northern Hemisphere) and a zonal asymmetry (a small basin and a large basin).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes