2 resultados para Decimal system

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bureau International des Poids et Mesures, the BIPM, was established by Article 1 of the Convention du Mètre, on 20 May 1875, and is charged with providing the basis for a single, coherent system of measurements to be used throughout the world. The decimal metric system, dating from the time of the French Revolution, was based on the metre and the kilogram. Under the terms of the 1875 Convention, new international prototypes of the metre and kilogram were made and formally adopted by the first Conférence Générale des Poids et Mesures (CGPM) in 1889. Over time this system developed, so that it now includes seven base units. In 1960 it was decided at the 11th CGPM that it should be called the Système International d’Unités, the SI (in English: the International System of Units). The SI is not static but evolves to match the world’s increasingly demanding requirements for measurements at all levels of precision and in all areas of science, technology, and human endeavour. This document is a summary of the SI Brochure, a publication of the BIPM which is a statement of the current status of the SI. The seven base units of the SI, listed in Table 1, provide the reference used to define all the measurement units of the International System. As science advances, and methods of measurement are refined, their definitions have to be revised. The more accurate the measurements, the greater the care required in the realization of the units of measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utility of the decimal growth stage (DGS) scoring system for cereals is reviewed. The DGS is the most widely used scale in academic and commercial applications because of its comprehensive coverage of cereal developmental stages, the ease of use and definition provided and adoption by official agencies. The DGS has demonstrable and established value in helping to optimise the timing of agronomic inputs, particularly with regard to plant growth regulators, herbicides, fungicides and soluble nitrogen fertilisers. In addition, the DGS is used to help parameterise crop models, and also in understanding the response and adaptation of crops to the environment. The value of the DGS for increasing precision relies on it indicating, to some degree, the various stages in the development of the stem apex and spike. Coincidence of specific growth stage scores with the transition of the apical meristem from a vegetative to a reproductive state, and also with the period of meiosis, is unreliable. Nonetheless, in pot experiments it is shown that the broad period of booting (DGS 41–49) appears adequate for covering the duration when the vulnerability of meiosis to drought and heat stress is exposed. Similarly, the duration of anthesis (61–69) is particularly susceptible to abiotic stresses: initially from a fertility perspective, but increasingly from a mean grain weight perspective as flowering progresses to DGS 69 and then milk development. These associations with DGS can have value at the crop level of organisation: for interpreting environmental effects, and in crop modelling. However, genetic, biochemical and physiological analysis to develop greater understanding of stress acclimation during the vegetative state, and tolerance at meiosis, does require more precision than DGS can provide. Similarly, individual floret analysis is needed to further understand the genetic basis of stress tolerance during anthesis.