50 resultados para Decay of energy
em CentAUR: Central Archive University of Reading - UK
Resumo:
The influence of a large meridional submarine ridge on the decay of Agulhas rings is investigated with a 1 and 2-layer setup of the isopycnic primitive-equation ocean model MICOM. In the single-layer case we show that the SSH decay of the ring is primarily governed by bottom friction and secondly by the radiation of Rossby waves. When a topographic ridge is present, the effect of the ridge on SSH decay and loss of tracer from the ring is negligible. However, the barotropic ring cannot pass the ridge due to energy and vorticity constraints. In the case of a two-layer ring the initial SSH decay is governed by a mixed barotropic–baroclinic instability of the ring. Again, radiation of barotropic Rossby waves is present. When the ring passes the topographic ridge, it shows a small but significant stagnation of SSH decay, agreeing with satellite altimetry observations. This is found to be due to a reduction of the growth rate of the m = 2 instability, to conversions of kinetic energy to the upper layer, and to a decrease in Rossby-wave radiation. The energy transfer is related to the fact that coherent structures in the lower layer cannot pass the steep ridge due to energy constraints. Furthermore, the loss of tracer from the ring through filamentation is less than for a ring moving over a flat bottom, related to a decrease in propagation speed of the ring. We conclude that ridges like the Walvis Ridge tend to stabilize a multi-layer ring and reduce its decay.
Resumo:
To gain a new perspective on the interaction of the Atlantic Ocean and the atmosphere, the relationship between the atmospheric and oceanic meridional energy transports is studied in a version of HadCM3, the U.K. Hadley Centre's coupled climate model. The correlation structure of the energy transports in the atmosphere and Atlantic Ocean as a function of latitude, and the cross correlation between the two systems are analyzed. The processes that give rise to the correlations are then elucidated using regression analyses. In northern midlatitudes, the interannual variability of the Atlantic Ocean energy transport is dominated by Ekman processes. Anticorrelated zonal winds in the subtropics and midlatitudes, particularly associated with the North Atlantic Oscillation (NAO), drive anticorrelated meridional Ekman transports. Variability in the atmospheric energy transport is associated with changes in the stationary waves, but is only weakly related to the NAO. Nevertheless, atmospheric driving of the oceanic Ekman transports is responsible for a bipolar pattern in the correlation between the atmosphere and Atlantic Ocean energy transports. In the Tropics, the interannual variability of the Atlantic Ocean energy transport is dominated by an adjustment of the tropical ocean to coastal upwelling induced along the Venezuelan coast by a strengthening of the easterly trade winds. Variability in the atmospheric energy transport is associated with a cross-equatorial meridional overturning circulation that is only weakly associated with variability in the trade winds along the Venezuelan coast. In consequence, there is only very limited correlation between the atmosphere and Atlantic Ocean energy transports in the Tropics of HadCM3
Resumo:
The Indian Ocean water that ends up in the Atlantic Ocean detaches from the Agulhas Current retroflection predominantly in the form of Agulhas rings and cyclones. Using numerical Lagrangian float trajectories in a high-resolution numerical ocean model, the fate of coherent structures near the Agulhas Current retroflection is investigated. It is shown that within the Agulhas Current, upstream of the retroflection, the spatial distributions of floats ending in the Atlantic Ocean and floats ending in the Indian Ocean are to a large extent similar. This indicates that Agulhas leakage occurs mostly through the detachment of Agulhas rings. After the floats detach from the Agulhas Current, the ambient water quickly looses its relative vorticity. The Agulhas rings thus seem to decay and loose much of their water in the Cape Basin. A cluster analysis reveals that most water in the Agulhas Current is within clusters of 180 km in diameter. Halfway in the Cape Basin there is an increase in the number of larger clusters with low relative vorticity, which carry the bulk of the Agulhas leakage transport through the Cape Basin. This upward cascade with respect to the length scales of the leakage, in combination with a power law decay of the magnitude of relative vorticity, might be an indication that the decay of Agulhas rings is somewhat comparable to the decay of two-dimensional turbulence.
Resumo:
The LINK Integrated Farming Systems (LINK-IFS) Project (1992-1997) was setup to compare conventional and integrated arable farming systems (IAFS), concentrating on practical feasibility and economic viability, but also taking into account the level of inputs used and environmental impact. As part of this, an examination into energy use within the two systems was also undertaken. This paper presents the results from that analysis. The data used is from the six sites within the LINK-IFS Project, spread through the arable production areas of England and from the one site in Scotland, covering the 5 years of the project. The comparison of the energy used is based on the equipment and inputs used to produce I kg of each crop within the conventional and integrated rotations, and thereby the overall energy used for each system. The results suggest that, in terms of total energy used, the integrated system appears to be the most efficient. However, in terms of energy efficiency, energy use per kilogram of output, the results are less conclusive. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247-60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584-97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6-11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRCME system(0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency of utilization of body stores for milk production (k(t)). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate k(g) and k(t). Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for k(g) and k(t) using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for k(g) and 0.82 to 0.84 for k(t). Using the estimated values of k(g) and k(t), the data were corrected to allow for body tissue changes. Based on the definition of k(l) as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and k(l) were determined. Meta-analysis of the pooled data showed that the average k(l) ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.
Resumo:
Two experiments were undertaken in which grass silage was used in conjunction with a series of different concentrate types designed to examine the effect of carbohydrate source, protein level and degradability on total dietary phosphorus (P) utilization with emphasis on P pollution. Twelve Holstein-Friesian dairy cows in early to mid-lactation were used in an incomplete changeover design with four periods consisting of 4 weeks each. Phosphorus intake ranged from 54 to 80 g/day and faecal P represented the principal route by which ingested P was disposed of by cows, with insignificant amounts being voided in urine. A positive linear relationship between faecal P and P intake was established. In Experiment 1, P utilization was affected by dietary carbohydrate type, with an associated output of 3.3 g faecal P/g milk P produced for all treatments except those utilizing low degradable starch and low protein supplements, where a mean value of 2.8 g faecal P/g milk P was observed. In Experiment 2, where two protein levels and three protein degradabilities were examined, the efficiency of P utilization for milk P production was not affected by either level or degradability of crude protein (CP) but a significant reduction in faecal P excretion due to lower protein and P intake was observed. In general, P utilization in Experiment 2 was substantially improved compared to the Experiment 1, with an associated output of 1.8 g faecal P/g milk P produced. The improved utilization of P in Experiment 2 could be due to lower P content of the diets offered and higher dry matter (DM) intake. For dairy cows weighing 600 kg, consuming 17-18 kg DM/day and producing about 25 kg milk, P excretion in faeces and hence P pollution to the environment might be minimized without compromising lactational performance by formulating diets to supply about 68 g P/day, which is close to recent published recommended requirements for P.
Resumo:
The efficiency of energy utilisation in cattle is a determinant of the profitability of milk and beef production, as well as their environmental impact. At an animal level, meat and milk production by ruminants is less efficient than pig and poultry production, in part due to lower digestibility of forages compared with grains. However, when compared on the basis of human-edible inputs, the ruminant has a clear efficiency advantage. There has been recent interest in feed conversion efficiency (FCE) in dairy cattle and residual feed intake, an indicator of FCE, in beef cattle. Variation between animals in FCE may have genetic components, allowing selection for animals with greater efficiency and reduced environmental impact. A major source of variation in FCE is feed digestibility, and thus approaches that improve digestibility should improve FCE if rumen function is not disrupted. Methane represents a substantial loss of digestible energy from rations. Major determinants of methane emission are the amount of feed consumed and the proportions of forage and concentrates fed. In addition, feeding fat has long been known to reduce methane emission. A myriad of other supplements and additives are currently being investigated as mitigators of methane emission, but in many cases compounds effective in sheep are ineffective in lactating dairy cows. Ultimately, the adoption of ‘best practice’ in diet formulation and management may be the most effective option for reducing methane. In assessing the efficiency of energy use for milk and meat production by cattle, and their environmental impact, it is imperative that comparisons be made at a systems level, and that the wider social and economic implications of mitigation policy are considered.
Resumo:
This paper focuses on the effect of energy performance ratings on the capital values, rental values and equivalent yields of UK commercial property assets. Of which a small number are also BREEAM rated, the study is based upon 708 commercial property assets held in the IPD UK Universe drawn from across all PAS segments. Incorporating a range of controls such as unexpired lease term, vacancy rate and tenant credit risk, hedonic regression procedures are used to estimate the effect of EPC rating. The study finds no evidence of a strong relationship between environmental and/or energy performance and rental and capital value. Bearing in mind the small number of BREEAM rated assets, there was a small but statistically significant effect on equivalent yield only. Similarly, there was no evidence that the EPC rating had any effect on Market Rent or Market Value with only minor effects of EPC ratings on equivalent yields. The preliminary conclusion is that energy labelling is not yet having the effects on Market Values and Market Rents that provide incentives for market participants to improve the energy efficiency of their commercial real estate assets.