3 resultados para Death rate
em CentAUR: Central Archive University of Reading - UK
Resumo:
The recently formulated metabolic theory of ecology has profound implications for the evolution of life histories. Metabolic rate constrains the scaling of production with body mass, so that larger organisms have lower rates of production on a mass-specific basis than smaller ones. Here, we explore the implications of this constraint for life-history evolution. We show that for a range of very simple life histories, Darwinian fitness is equal to birth rate minus death rate. So, natural selection maximizes birth and production rates and minimizes death rates. This implies that decreased body size will generally be favored because it increases production, so long as mortality is unaffected. Alternatively, increased body size will be favored only if it decreases mortality or enhances reproductive success sufficiently to override the preexisting production constraint. Adaptations that may favor evolution of larger size include niche shifts that decrease mortality by escaping predation or that increase fecundity by exploiting new abundant food sources. These principles can be generalized to better understand the intimate relationship between the genetic currency of evolution and the metabolic currency of ecology.
Resumo:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.
Resumo:
SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.