2 resultados para De Cindio, Fiorella
em CentAUR: Central Archive University of Reading - UK
Resumo:
Explanations are an important by-product of medical decisionsupport activities, as they have proved to favour compliance and correct treatment performance. To achieve this purpose, these texts should have a strong argumentation content and should adapt to emotional, as well as to rational attitudes of the Addressee. This paper describes how Rhetorical Sentence Planning can contribute to this aim: the rulebased plan discourse revision is introduced between Text Planning and Linguistic Realization, and exploits knowledge about the user personality and emotions and about the potential impact of domain items on user compliance and memory recall. The proposed approach originates from analytical and empirical evaluation studies of computer generated explanation texts in the domain of drug prescription. This work was partially supported by a British-Italian Collaboration in Research and Higher Education Project, which involved the Universities of Reading and of Bari, in 1996.
Resumo:
In this article, we examine the case of a system that cooperates with a “direct” user to plan an activity that some “indirect” user, not interacting with the system, should perform. The specific application we consider is the prescription of drugs. In this case, the direct user is the prescriber and the indirect user is the person who is responsible for performing the therapy. Relevant characteristics of the two users are represented in two user models. Explanation strategies are represented in planning operators whose preconditions encode the cognitive state of the indirect user; this allows tailoring the message to the indirect user's characteristics. Expansion of optional subgoals and selection among candidate operators is made by applying decision criteria represented as metarules, that negotiate between direct and indirect users' views also taking into account the context where explanation is provided. After the message has been generated, the direct user may ask to add or remove some items, or change the message style. The system defends the indirect user's needs as far as possible by mentioning the rationale behind the generated message. If needed, the plan is repaired and the direct user model is revised accordingly, so that the system learns progressively to generate messages suited to the preferences of people with whom it interacts.