3 resultados para David Hilbert, Henri Poincaré, Giuseppe Peano, Federigo Enriques
em CentAUR: Central Archive University of Reading - UK
Resumo:
We study stagnation points of two-dimensional steady gravity free-surface water waves with vorticity. We obtain for example that, in the case where the free surface is an injective curve, the asymptotics at any stagnation point is given either by the “Stokes corner flow” where the free surface has a corner of 120°, or the free surface ends in a horizontal cusp, or the free surface is horizontally flat at the stagnation point. The cusp case is a new feature in the case with vorticity, and it is not possible in the absence of vorticity. In a second main result we exclude horizontally flat singularities in the case that the vorticity is 0 on the free surface. Here the vorticity may have infinitely many sign changes accumulating at the free surface, which makes this case particularly difficult and explains why it has been almost untouched by research so far. Our results are based on calculations in the original variables and do not rely on structural assumptions needed in previous results such as isolated singularities, symmetry and monotonicity.
Resumo:
We study the spectrum of a one-dimensional Dirac operator pencil, with a coupling constant in front of the potential considered as the spectral parameter. Motivated by recent investigations of graphene waveguides, we focus on the values of the coupling constant for which the kernel of the Dirac operator contains a square integrable function. In physics literature such a function is called a confined zero mode. Several results on the asymptotic distribution of coupling constants giving rise to zero modes are obtained. In particular, we show that this distribution depends in a subtle way on the sign variation and the presence of gaps in the potential. Surprisingly, it also depends on the arithmetic properties of certain quantities determined by the potential. We further observe that variable sign potentials may produce complex eigenvalues of the operator pencil. Some examples and numerical calculations illustrating these phenomena are presented.