26 resultados para Database, Image Retrieval, Browsing, Semantic Concept

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques to retrieve reliable images from complicated objects are described, overcoming problems introduced by uneven surfaces, giving enhanced depth resolution and improving image contrast. The techniques are illustrated with application to THz imaging of concealed wall paintings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In any data mining applications, automated text and text and image retrieval of information is needed. This becomes essential with the growth of the Internet and digital libraries. Our approach is based on the latent semantic indexing (LSI) and the corresponding term-by-document matrix suggested by Berry and his co-authors. Instead of using deterministic methods to find the required number of first "k" singular triplets, we propose a stochastic approach. First, we use Monte Carlo method to sample and to build much smaller size term-by-document matrix (e.g. we build k x k matrix) from where we then find the first "k" triplets using standard deterministic methods. Second, we investigate how we can reduce the problem to finding the "k"-largest eigenvalues using parallel Monte Carlo methods. We apply these methods to the initial matrix and also to the reduced one. The algorithms are running on a cluster of workstations under MPI and results of the experiments arising in textual retrieval of Web documents as well as comparison of the stochastic methods proposed are presented. (C) 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we introduce a novel high-level visual content descriptor devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt for bridging the so called "semantic gap". The proposed image feature vector model is fundamentally underpinned by an automatic image labelling framework, called Collaterally Cued Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts accompanying the images with the state-of-the-art low-level visual feature extraction techniques for automatically assigning textual keywords to image regions. A subset of the Corel image collection was used for evaluating the proposed method. The experimental results indicate that our semantic-level visual content descriptors outperform both conventional visual and textual image feature models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, ranking entities (resources) on the Semantic Web (SW) is subject to importance, relevance, and query length. Few existing SW search systems cover all of these aspects. Moreover, many existing efforts simply reuse the technologies from conventional Information Retrieval (IR), which are not designed for SW data. This paper proposes a ranking mechanism, which includes all three categories of rankings and are tailored to SW data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Older adults often demonstrate higher levels of false recognition than do younger adults. However, in experiments using novel shapes without preexisting semantic representations, this age-related elevation in false recognition was found to be greatly attenuated. Two experiments tested a semantic categorization account of these findings, examining whether older adults show especially heightened false recognition if the stimuli have preexisting semantic representations, such that semantic category information attenuates or truncates the encoding or retrieval of item-specific perceptual information. In Experiment 1, ambiguous shapes were presented with or without disambiguating semantic labels. Older adults showed higher false recognition when labels were present but not when labels were never presented. In Experiment 2, older adults showed higher false recognition for concrete but not abstract objects. The semantic categorization account was supported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Problems with lexical retrieval are common across all types of aphasia but certain word classes are thought to be more vulnerable in some aphasia types. Traditionally, verb retrieval problems have been considered characteristic of non-fluent aphasias but there is growing evidence that verb retrieval problems are also found in fluent aphasia. As verbs are retrieved from the mental lexicon with syntactic as well as phonological and semantic information, it is speculated that an improvement in verb retrieval should enhance communicative abilities in this population as in others. We report on an investigation into the effectiveness of verb treatment for three individuals with fluent aphasia. Methods & Procedures: Multiple pre-treatment baselines were established over 3 months in order to monitor language change before treatment. The three participants then received twice-weekly verb treatment over approximately 4 months. All pre-treatment assessments were administered immediately after treatment and 3 months post-treatment. Outcome & Results: Scores fluctuated in the pre-treatment period. Following treatment, there was a significant improvement in verb retrieval for two of the three participants on the treated items. The increase in scores for the third participant was statistically nonsignificant but post-treatment scores moved from below the normal range to within the normal range. All participants were significantly quicker in the verb retrieval task following treatment. There was an increase in well-formed sentences in the sentence construction test and in some samples of connected speech. Conclusions: Repeated systematic treatment can produce a significant improvement in verb retrieval of practised items and generalise to unpractised items for some participants. An increase in well-formed sentences is seen for some speakers. The theoretical and clinical implications of the results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to explore the impact of a degraded semantic system on the structure of language production, we analysed transcripts from autobiographical memory interviews to identify naturally-occurring speech errors by eight patients with semantic dementia (SD) and eight age-matched normal speakers. Relative to controls, patients were significantly more likely to (a) substitute and omit open class words, (b) substitute (but not omit) closed class words, (c) substitute incorrect complex morphological forms and (d) produce semantically and/or syntactically anomalous sentences. Phonological errors were scarce in both groups. The study confirms previous evidence of SD patients’ problems with open class content words which are replaced by higher frequency, less specific terms. It presents the first evidence that SD patients have problems with closed class items and make syntactic as well as semantic speech errors, although these grammatical abnormalities are mostly subtle rather than gross. The results can be explained by the semantic deficit which disrupts the representation of a pre-verbal message, lexical retrieval and the early stages of grammatical encoding.