78 resultados para Data-Information-Knowledge Chain
em CentAUR: Central Archive University of Reading - UK
Resumo:
There has been an increased emphasis upon the application of science for humanitarian and development planning, decision-making and practice; particularly in the context of understanding, assessing and anticipating risk (e.g. HERR, 2011). However, there remains very little guidance for practitioners on how to integrate sciences they may have had little contact with in the past (e.g. climate). This has led to confusion as to which ‘science’ might be of use and how it would be best utilised. Furthermore, since this integration has stemmed from a need to be more predictive, agencies are struggling with the problems associated with uncertainty and probability. Whilst a range of expertise is required to build resilience, these guidelines focus solely upon the relevant data, information, knowledge, methods, principles and perspective which scientists can provide, that typically lie outside of current humanitarian and development approaches. Using checklists, real-life case studies and scenarios the full guidelines take practitioners through a five step approach to finding, understanding and applying science. This document provides a short summary of the five steps and some key lessons for integrating science.
Resumo:
There are a number of challenges associated with managing knowledge and information in construction organizations delivering major capital assets. These include the ever-increasing volumes of information, losing people because of retirement or competitors, the continuously changing nature of information, lack of methods on eliciting useful knowledge, development of new information technologies and changes in management and innovation practices. Existing tools and methodologies for valuing intangible assets in fields such as engineering, project management and financial, accounting, do not address fully the issues associated with the valuation of information and knowledge. Information is rarely recorded in a way that a document can be valued, when either produced or subsequently retrieved and re-used. In addition there is a wealth of tacit personal knowledge which, if codified into documentary information, may prove to be very valuable to operators of the finished asset or future designers. This paper addresses the problem of information overload and identifies the differences between data, information and knowledge. An exploratory study was conducted with a leading construction consultant examining three perspectives (business, project management and document management) by structured interviews and specifically how to value information in practical terms. Major challenges in information management are identified. An through-life Information Evaluation methodology (IEM) is presented to reduce information overload and to make the information more valuable in the future.
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.
Resumo:
Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.
Resumo:
Managing a construction project supply chain effectively and efficiently is extremely difficult due to involvement of numerous sectors that are supported by ineffective communication system. An efficient construction supply chain system ensures the delivery of materials and other services to construction site while minimising costs and rewarding all sectors based on value added to the supply chain. The advancement of information, communication and wireless technologies is driving construction companies to deploy supply chain management strategies to seek better outputs. As part of the emerging wireless technologies, contextaware computing capability represents the next generation of ICT to the construction services. Conceptually, context-awareness could be integrated with Web Services in order to ensure the delivery of pertinent information to construction site and enhance construction supply chain collaboration. An initial study has indicated that this integrated system has the potential of serving and improving the construction services delivery through access to context-specific data, information and services on as-needed basis.
Resumo:
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.
Resumo:
Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.
Resumo:
In England 78% of mothers initiate breastfeeding and in the UK less than 1% exclusively breastfeed until 6 months, despite WHO recommendations to do so. This study investigated women’s infant feeding choices using in-depth interviews with 12 mothers of infants aged 7-18 weeks. Using content analysis, four themes emerged: (1) Information, Knowledge and Decision Making, (2) Physical Capability, (3) Family and Social Influences, (4) Lifestyle, Independence and Self-Identity. Whilst women were aware of the ‘Breast is Best’ message, some expressed distrust in this information if they had not been breastfed themselves. Women felt their own infant feeding choice was influenced by the perceived norm amongst family and friends. Women described how breastfeeding hindered their ability to retain their self-identities beyond motherhood as it limited their independence. Several second-time mothers felt they lacked support from health professionals when breastfeeding their second baby, even if they had previously encountered breastfeeding difficulties. The study indicates that experience of breastfeeding, and belief in the health benefits associated with it are important factors for initiation of breastfeeding, whilst decreased independence and self-identity may influence duration of breastfeeding. Intervention and support schemes should tackle all mothers, not just first-time mothers.
Resumo:
The induction of classification rules from previously unseen examples is one of the most important data mining tasks in science as well as commercial applications. In order to reduce the influence of noise in the data, ensemble learners are often applied. However, most ensemble learners are based on decision tree classifiers which are affected by noise. The Random Prism classifier has recently been proposed as an alternative to the popular Random Forests classifier, which is based on decision trees. Random Prism is based on the Prism family of algorithms, which is more robust to noise. However, like most ensemble classification approaches, Random Prism also does not scale well on large training data. This paper presents a thorough discussion of Random Prism and a recently proposed parallel version of it called Parallel Random Prism. Parallel Random Prism is based on the MapReduce programming paradigm. The paper provides, for the first time, novel theoretical analysis of the proposed technique and in-depth experimental study that show that Parallel Random Prism scales well on a large number of training examples, a large number of data features and a large number of processors. Expressiveness of decision rules that our technique produces makes it a natural choice for Big Data applications where informed decision making increases the user’s trust in the system.
Resumo:
Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Construction materials and equipment are essential building blocks of every construction project and may account for 50-60 per cent of the total cost of construction. The rate of their utilization, on the other hand, is the element that most directly relates to a project progress. A growing concern in the industry that inadequate efficiency hinders its success could thus be accommodated by turning construction into a logistic process. Although mostly limited, recent attempts and studies show that Radio Frequency IDentification (RFID) applications have significant potentials in construction. However, the aim of this research is to show that the technology itself should not only be used for automation and tracking to overcome the supply chain complexity but also as a tool to generate, record and exchange process-related knowledge among the supply chain stakeholders. This would enable all involved parties to identify and understand consequences of any forthcoming difficulties and react accordingly before they cause major disruptions in the construction process. In order to achieve this aim the study focuses on a number of methods. First of all it develops a generic understanding of how RFID technology has been used in logistic processes in industrial supply chain management. Secondly, it investigates recent applications of RFID as an information and communication technology support facility in construction logistics for the management of construction supply chain. Based on these the study develops an improved concept of a construction logistics architecture that explicitly relies on integrating RFID with the Global Positioning System (GPS). The developed conceptual model architecture shows that categorisation provided through RFID and traceability as a result of RFID/GPS integration could be used as a tool to identify, record and share potential problems and thus vastly improve knowledge management processes within the entire supply chain. The findings thus clearly show a need for future research in this area.
Resumo:
This paper describes a proposed new approach to the Computer Network Security Intrusion Detection Systems (NIDS) application domain knowledge processing focused on a topic map technology-enabled representation of features of the threat pattern space as well as the knowledge of situated efficacy of alternative candidate algorithms for pattern recognition within the NIDS domain. Thus an integrative knowledge representation framework for virtualisation, data intelligence and learning loop architecting in the NIDS domain is described together with specific aspects of its deployment.