8 resultados para Data utility

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initial bacterial colonization, including colonization with health-positive bacteria, such as bifidobacteria and lactobacilli, is necessary for the normal development of intestinal innate and adaptive immune defenses. The predominance of beneficial bacteria in the gut microflora of breast-fed infants is thought to be, at least in part, supported by the metabolism of the complex mixture of oligosaccharides present in human breast milk, and a more adult-type intestinal microbiota is found in formula-fed infants. Inadequate gut colonization, dysbiosis, may lead to an increased risk of infectious, allergic, and autoimmune disorders later in life. The addition of appropriate amounts of selected prebiotics to infant formulas can enhance the growth of bifidobacteria or lactobacilli in the colonic microbiota and, thereby, might produce beneficial effects. Among the substrates considered as prebiotics are the oligosaccharides inulin, fructo-oligosaccharides, galacto-oligosaccharides, and lactulose. There are some reports that such prebiotics have beneficial effects on various markers of health. For example, primary prevention trials in infants have provided promising data on prevention of infections and atopic dermatitis. Additional well-designed prospective clinical trials and mechanistic studies are needed to advance knowledge further in this promising field. (J Pediatr 2009;155:S61-70).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on the wealth-protective effects of socially responsible firm behavior by examining the association between corporate social performance (CSP) and financial risk for an extensive panel data sample of S&P 500 companies between the years 1992 and 2009. In addition, the link between CSP and investor utility is investigated. The main findings are that corporate social responsibility is negatively but weakly related to systematic firm risk and that corporate social irresponsibility is positively and strongly related to financial risk. The fact that both conventional and downside risk measures lead to the same conclusions adds convergent validity to the analysis. However, the risk-return trade-off appears to be such that no clear utility gain or loss can be realized by investing in firms characterized by different levels of social and environmental performance. Overall volatility conditions of the financial markets are shown to play a moderating role in the nature and strength of the CSP-risk relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t). Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing recognition that agricultural landscapes meet multiple societal needs and demands beyond provision of economic and environmental goods and services. Accordingly, there have been significant calls for the inclusion of societal, amenity and cultural values in agri-environmental landscape indicators to assist policy makers in monitoring the wider impacts of land-based policies. However, capturing the amenity and cultural values that rural agrarian areas provide, by use of such indicators, presents significant challenges. The EU social awareness of landscape indicator represents a new class of generalized social indicator using a top-down methodology to capture the social dimensions of landscape without reference to the specific structural and cultural characteristics of individual landscapes. This paper reviews this indicator in the context of existing agri-environmental indicators and their differing design concepts. Using a stakeholder consultation approach in five case study regions, the potential and limitations of the indicator are evaluated, with a particular focus on its perceived meaning, utility and performance in the context of different user groups and at different geographical scales. This analysis supplements previous EU-wide assessments, through regional scale assessment of the limitations and potentialities of the indicator and the need for further data collection. The evaluation finds that the perceived meaning of the indicator does not vary with scale, but in common with all mapped indicators, the usefulness of the indicator, to different user groups, does change with scale of presentation. This indicator is viewed as most useful when presented at the scale of governance at which end users operate. The relevance of the different sub-components of the indicator are also found to vary across regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second language acquisition researchers often face particular challenges when attempting to generalize study findings to the wider learner population. For example, language learners constitute a heterogeneous group, and it is not always clear how a study’s findings may generalize to other individuals who may differ in terms of language background and proficiency, among many other factors. In this paper, we provide an overview of how mixed-effects models can be used to help overcome these and other issues in the field of second language acquisition. We provide an overview of the benefits of mixed-effects models and a practical example of how mixed-effects analyses can be conducted. Mixed-effects models provide second language researchers with a powerful statistical tool in the analysis of a variety of different types of data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The joint and alternative uses of attribute non-attendance and importance ranking data within discrete choice experiments are investigated using data from Lebanon examining consumers’ preferences for safety certification in food. We find that both types of information; attribute non-attendance and importance rankings, improve estimates of respondent utility. We introduce a method of integrating both types of information simultaneously and find that this outperforms models where either importance ranking or non-attendance data are used alone. As in previous studies, stated non-attendance of attributes was not found to be consistent with respondents having zero marginal utility for those attributes