9 resultados para Data Coding.
em CentAUR: Central Archive University of Reading - UK
Resumo:
The general packet radio service (GPRS) has been developed to allow packet data to be transported efficiently over an existing circuit-switched radio network, such as GSM. The main application of GPRS are in transporting Internet protocol (IP) datagrams from web servers (for telemetry or for mobile Internet browsers). Four GPRS baseband coding schemes are defined to offer a trade-off in requested data rates versus propagation channel conditions. However, data rates in the order of > 100 kbits/s are only achievable if the simplest coding scheme is used (CS-4) which offers little error detection and correction (EDC) (requiring excellent SNR) and the receiver hardware is capable of full duplex which is not currently available in the consumer market. A simple EDC scheme to improve the GPRS block error rate (BLER) performance is presented, particularly for CS-4, however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel and improving the user's application data rate. As GPRS requires intensive processing in the baseband, a viable field programmable gate array (FPGA) solution is presented in this paper.
Resumo:
We describe a general likelihood-based 'mixture model' for inferring phylogenetic trees from gene-sequence or other character-state data. The model accommodates cases in which different sites in the alignment evolve in qualitatively distinct ways, but does not require prior knowledge of these patterns or partitioning of the data. We call this qualitative variability in the pattern of evolution across sites "pattern-heterogeneity" to distinguish it from both a homogenous process of evolution and from one characterized principally by differences in rates of evolution. We present studies to show that the model correctly retrieves the signals of pattern-heterogeneity from simulated gene-sequence data, and we apply the method to protein-coding genes and to a ribosomal 12S data set. The mixture model outperforms conventional partitioning in both these data sets. We implement the mixture model such that it can simultaneously detect rate- and pattern-heterogeneity. The model simplifies to a homogeneous model or a rate- variability model as special cases, and therefore always performs at least as well as these two approaches, and often considerably improves upon them. We make the model available within a Bayesian Markov-chain Monte Carlo framework for phylogenetic inference, as an easy-to-use computer program.
Resumo:
The General Packet Radio Service (GPRS) has been developed for the mobile radio environment to allow the migration from the traditional circuit switched connection to a more efficient packet based communication link particularly for data transfer. GPRS requires the addition of not only the GPRS software protocol stack, but also more baseband functionality for the mobile as new coding schemes have be en defined, uplink status flag detection, multislot operation and dynamic coding scheme detect. This paper concentrates on evaluating the performance of the GPRS coding scheme detection methods in the presence of a multipath fading channel with a single co-channel interferer as a function of various soft-bit data widths. It has been found that compressing the soft-bit data widths from the output of the equalizer to save memory can influence the likelihood decision of the coding scheme detect function and hence contribute to the overall performance loss of the system. Coding scheme detection errors can therefore force the channel decoder to either select the incorrect decoding scheme or have no clear decision which coding scheme to use resulting in the decoded radio block failing the block check sequence and contribute to the block error rate. For correct performance simulation, the performance of the full coding scheme detection must be taken into account.
Resumo:
The General Packet Radio Service (GPRS) was developed to allow packet data to be transported efficiently over an existing circuit switched radio network. The main applications for GPRS are in transporting IP datagram’s from the user’s mobile Internet browser to and from the Internet, or in telemetry equipment. A simple Error Detection and Correction (EDC) scheme to improve the GPRS Block Error Rate (BLER) performance is presented, particularly for coding scheme 4 (CS-4), however gains in other coding schemes are seen. For every GPRS radio block that is corrected by the EDC scheme, the block does not need to be retransmitted releasing bandwidth in the channel, improving throughput and the user’s application data rate. As GPRS requires intensive processing in the baseband, a viable hardware solution for a GPRS BLER co-processor is discussed that has been currently implemented in a Field Programmable Gate Array (FPGA) and presented in this paper.
Resumo:
This paper proposes a novel interference cancellation algorithm for the two-path successive relay system using network coding. The two-path successive relay scheme was proposed recently to achieve full date rate transmission with half-duplex relays. Due to the simultaneous data transmission at the relay and source nodes, the two-path relay suffers from the so-called inter-relay interference (IRI) which may significantly degrade the system performance. In this paper, we propose to use the network coding to remove the IRI such that the interference is first encoded with the network coding at the relay nodes and later removed at the destination. The network coding has low complexity and can well suppress the IRI. Numerical simulations show that the proposed algorithm has better performance than existing approaches.
Resumo:
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.
Resumo:
Low-power medium access control (MAC) protocols used for communication of energy constraint wireless embedded devices do not cope well with situations where transmission channels are highly erroneous. Existing MAC protocols discard corrupted messages which lead to costly retransmissions. To improve transmission performance, it is possible to include an error correction scheme and transmit/receive diversity. It is possible to add redundant information to transmitted packets in order to recover data from corrupted packets. It is also possible to make use of transmit/receive diversity via multiple antennas to improve error resiliency of transmissions. Both schemes may be used in conjunction to further improve the performance. In this study, the authors show how an error correction scheme and transmit/receive diversity can be integrated in low-power MAC protocols. Furthermore, the authors investigate the achievable performance gains of both methods. This is important as both methods have associated costs (processing requirements; additional antennas and power) and for a given communication situation it must be decided which methods should be employed. The authors’ results show that, in many practical situations, error control coding outperforms transmission diversity; however, if very high reliability is required, it is useful to employ both schemes together.
Resumo:
Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form —a tensor— by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.
Resumo:
Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data, and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established state-of-the-art methods.