10 resultados para Damien Echols
em CentAUR: Central Archive University of Reading - UK
Resumo:
In the event of a release of toxic gas in the center of London, the emergency services would need to determine quickly the extent of the area contaminated. The transport of pollutants by turbulent flow within the complex street and building architecture of cities is not straightforward, and we might wonder whether it is at all possible to make a scientifically-reasoned decision. Here we describe recent progress from a major UK project, ‘Dispersion of Air Pollution and its Penetration into the Local Environment’ (DAPPLE, www.dapple.org.uk). In DAPPLE, we focus on the movement of airborne pollutants in cities by developing a greater understanding of atmospheric flow and dispersion within urban street networks. In particular, we carried out full-scale dispersion experiments in central London (UK) during 2003, 2004, 2007, and 2008 to address the extent of the dispersion of tracers following their release at street level. These measurements complemented previous studies because (i) our focus was on dispersion within the first kilometer from the source, when most of the material was expected to remain within the street network rather than being mixed into the boundary layer aloft, (ii) measurements were made under a wide variety of meteorological conditions, and (iii) central London represents a European, rather than North American, city geometry. Interpretation of the results from the full-scale experiments was supported by extensive numerical and wind tunnel modeling, which allowed more detailed analysis under idealized and controlled conditions. In this article, we review the full-scale DAPPLE methodologies and show early results from the analysis of the 2007 field campaign data.
Resumo:
This major curated exhibition, publication and events builds on Rowlands’ curatorial research. Working in collaboration with co-curators Martin Clark, Artistic Director, Tate St Ives and Michael Bracewell, cultural historian, the exhibition sought to explore new narratives within British art. The innovative curatorial methodology developed from a fiction found in the infamous novel, The Dark Monarch by Sven Berlin, Gallery Press 1962. The research sought specific archival and collection work that allowed thematic strands to emerge that represented influences across generations. The exhibition features two-hundred artworks, from the Tate Collection, archives and other significant British public and private collections. It examines the development of early Modernism, in the UK, as well as the reappearance of esoteric and arcane references in a significant strand of contemporary art practice. Historical works from Samuel Palmer, Graham Sutherland, Henry Moore and Paul Nash are shown alongside contemporary artists including Derek Jarman, Cerith Wyn Evans, Eva Rothschild, Linder and John Russell. The exhibition includes a key work by Damien Hirst ¬ the first time he has been shown at Tate St Ives and a number of contemporary commissions. The Dark Monarch publication extended the discourse of the research critically examining the tension between progressive modernity and romantic knowledge, the book focuses on the way that artworks are encoded with various histories - geological, mythical and magical. Essays examine magic as a counterpoint to modernity’s transparency and rational progress, but also draw out the links modernity has with notions such as fetishism, mana, totem, and the taboo. Often viewed as counter to Modernism, this collection of essays suggest that these products of illusion and delusion in fact belong to modernity. Drawing together 15 different writers commissioned to explore magic as a counterpoint of liberal understanding of modernity, drawing out links that modernity has with notions of fetish, taboo and occult philosophy. Including essays by Marina Warner, Ilsa Colsell, Philip Hoare, Chris Stephens, Jennifer Higgie and Morrissey.
Resumo:
We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction (θref) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique rooftop flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15-min mean θref of 5–10 degrees) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.
Resumo:
Seven-part elegy for David Mather (1954-2010)
Resumo:
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Resumo:
This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder. In this paper, four configurations of BESS are considered: single-phase, unlinked three-phase, linked three-phase without storage for phase-balancing only, and linked three-phase with storage. These four configurations are then assessed based on models of two real LV networks. In each case, the impact of the BESS is systematically evaluated at every node in the LV network using Matlab linked with OpenDSS. The location and configuration of a BESS is shown to be critical when seeking the best overall network impact or when considering specific impacts on voltage, losses, or utilisation separately. Furthermore, the paper also demonstrates that phase-balancing without energy storage can provide much of the gains on unbalanced networks compared to systems with energy storage.
Resumo:
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.