87 resultados para DYNAMICAL ENSEMBLES
em CentAUR: Central Archive University of Reading - UK
Resumo:
Recent numerical experiments have demonstrated that the state of the stratosphere has a dynamical impact on the state of the troposphere. To account for such an effect, a number of mechanisms have been proposed in the literature, all of which amount to a large-scale adjustment of the troposphere to potential vorticity (PV) anomalies in the stratosphere. This paper analyses whether a simple PV adjustment suffices to explain the actual dynamical response of the troposphere to the state of the stratosphere, the actual response being determined by ensembles of numerical experiments run with an atmospheric general-circulation model. For this purpose, a new PV inverter is developed. It is shown that the simple PV adjustment hypothesis is inadequate. PV anomalies in the stratosphere induce, by inversion, flow anomalies in the troposphere that do not coincide spatially with the tropospheric changes determined by the numerical experiments. Moreover, the tropospheric anomalies induced by PV inversion are on a larger scale than the changes found in the numerical experiments, which are linked to the Atlantic and Pacific storm-tracks. These findings imply that the impact of the stratospheric state on the troposphere is manifested through the impact on individual synoptic-scale systems and their self-organization in the storm-tracks. Changes in these weather systems in the troposphere are not merely synoptic-scale noise on a larger scale tropospheric response, but an integral part of the mechanism by which the state of the stratosphere impacts that of the troposphere.
Resumo:
The occurrence of mid-latitude windstorms is related to strong socio-economic effects. For detailed and reliable regional impact studies, large datasets of high-resolution wind fields are required. In this study, a statistical downscaling approach in combination with dynamical downscaling is introduced to derive storm related gust speeds on a high-resolution grid over Europe. Multiple linear regression models are trained using reanalysis data and wind gusts from regional climate model simulations for a sample of 100 top ranking windstorm events. The method is computationally inexpensive and reproduces individual windstorm footprints adequately. Compared to observations, the results for Germany are at least as good as pure dynamical downscaling. This new tool can be easily applied to large ensembles of general circulation model simulations and thus contribute to a better understanding of the regional impact of windstorms based on decadal and climate change projections.
Resumo:
We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions.
Resumo:
A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely dynamical downscaling (DD) methods. For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute (MPI-ESM) decadal prediction system. Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD agree well to the results of other studies using DD methods, with increasing Eout over northern Europe and a negative trend over southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in large model ensembles.
Resumo:
We use a simplified atmospheric general circulation model (AGCM) to investigate the response of the lower atmosphere to thermal perturbations in the lower stratosphere. The results show that generic heating of the lower stratosphere tends to weaken the sub-tropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low latitude heating displacing them poleward, and uniform heating displacing them equatorward. The patterns of response to the low latitude heating are similar to those found to be associated with solar variability in previous observational data analysis, and to the effects of varying solar UV radiation in sophisticated AGCMs. In order to investigate the chain of causality involved in converting the stratospheric thermal forcing to a tropospheric climate signal we conduct an experiment which uses an ensemble of model spin-ups to analyse the time development of the response to an applied stratospheric perturbation. We find that the initial effect of the change in static stability at the tropopause is to reduce the eddy momentum flux convergence in this region. This is followed by a vertical transfer of the momentum forcing anomaly by an anomalous mean circulation to the surface, where it is partly balanced by surface stress anomalies. The unbalanced part drives the evolution of the vertically integrated zonal flow. We conclude that solar heating of the stratosphere may produce changes in the circulation of the troposphere even without any direct forcing below the tropopause. We suggest that the impact of the stratospheric changes on wave propagation is key to the mechanisms involved.
Resumo:
A climatology of almost 700 extratropical cyclones is compiled by applying an automated feature tracking algorithm to a database of objectively identified cyclonic features. Cyclones are classified according to the relative contributions to the midlevel vertical motion of the forcing from upper and lower levels averaged over the cyclone intensification period (average U/L ratio) and also by the horizontal separation between their upper-level trough and low-level cyclone (tilt). The frequency distribution of the average U/L ratio of the cyclones contains two significant peaks and a long tail at high U/L ratio. Although discrete categories of cyclones have not been identified, the cyclones comprising the peaks and tail have characteristics that have been shown to be consistent with the type A, B, and C cyclones of the threefold classification scheme. Using the thresholds in average U/L ratio determined from the frequency distribution, type A, B, and C cyclones account for 30\%, 38\%, and 32\% of the total number of cyclones respectively. Cyclones with small average U/L ratio are more likely to be developing cyclones (attain a relative vorticity $\ge 1.2 \times 10^{-4} \mbox{s}^{-1}$) whereas cyclones with large average U/L ratio are more likely to be nondeveloping cyclones (60\% of type A cyclones develop whereas 31\% of type C cyclones develop). Type A cyclogenesis dominates in the development region East of the Rockies and over the gulf stream, type B cyclogenesis dominates in the region off the East coast of the USA, and type C cyclogenesis is more common over the oceans in regions of weaker low-level baroclinicity.
Resumo:
A new objective climatology of polar lows in the Nordic (Norwegian and Barents) seas has been derived from a database of diagnostics of objectively identified cyclones spanning the period January 2000 to April 2004. There are two distinct parts to this study: the development of the objective climatology and a characterization of the dynamical forcing of the polar lows identified. Polar lows are an intense subset of polar mesocyclones. Polar mesocyclones are distinguished from other cyclones in the database as those that occur in cold air outbreaks over the open ocean. The difference between the wet-bulb potential temperature at 700 hPa and the sea surface temperature (SST) is found to be an effective discriminator between the atmospheric conditions associated with polar lows and other cyclones in the Nordic seas. A verification study shows that the objective identification method is reliable in the Nordic seas region. After demonstrating success at identifying polar lows using the above method, the dynamical forcing of the polar lows in the Nordic seas is characterized. Diagnostics of the ratio of mid-level vertical motion attributable to quasi-geostrophic forcing from upper and lower levels (U/L ratio) are used to determine the prevalence of a recently proposed category of extratropical cyclogenesis, type C, for which latent heat release is crucial to development. Thirty-one percent of the objectively identified polar low events (36 from 115) exceeded the U/L ratio of 4.0, previously identified as a threshold for type C cyclones. There is a contrast between polar lows to the north and south of the Nordic seas. In the southern Norwegian Sea, the population of polar low events is dominated by type C cyclones. These possess strong convection and weak low-level baroclinicity. Over the Barents and northern Norwegian seas, the well-known cyclogenesis types A and B dominate. These possess stronger low-level baroclinicity and weaker convection.
Resumo:
Resumo:
A number of recent papers in the atmospheric science literature have suggested that a dynamical link exists between the stratosphere and troposphere. Numerical modelling studies have shown that the troposphere has a time-mean response to changes to the stratospheric climatological state. In this study the response of the troposphere to an imposed transient stratospheric change is examined. The study uses a high horizontal and vertical resolution numerical weather-prediction model. Experiments compare the tropospheric forecasts of two medium-range forecast ensembles which have identical tropospheric initial conditions and different stratospheric initial conditions. In three case studies described here, stratospheric initial conditions have a statistically significant impact on the tropospheric flow. The mechanism for this change involves, in its most basic step, a change to tropospheric synoptic-scale systems. A consistent change to the tropospheric synoptic-scale systems occurs in response to the stratospheric initial conditions. The aggregated impact of changes to individual synoptic systems maps strongly onto the structure of the Arctic Oscillation, particularly over the North Atlantic storm track. The relationship between the stratosphere and troposphere, while apparent in Arctic Oscillation diagnostics, does not occur on coherent, hemispheric scales.
Resumo:
The polar vortex of the Southern Hemisphere (SH) split dramatically during September 2002. The large-scale dynamical effects were manifest throughout the stratosphere and upper troposphere, corresponding to two distinct cyclonic centers in the upper troposphere–stratosphere system. High-resolution (T511) ECMWF analyses, supplemented by analyses from the Met Office, are used to present a detailed dynamical analysis of the event. First, the anomalous evolution of the SH polar vortex is placed in the context of the evolution that is usually witnessed during spring. Then high-resolution fields of potential vorticity (PV) from ECMWF are used to reveal several dynamical features of the split. Vortex fragments are rapidly sheared out into sheets of high (modulus) PV, which subsequently roll up into distinct synoptic-scale vortices. It is proposed that the stratospheric circulation becomes hydrodynamically unstable through a significant depth of the troposphere–stratosphere system as the polar vortex elongates.
Resumo:
The greenhouse effect of cloud may be quantified as the difference between outgoing longwave radiation (OLR) and its clear-sky component (OLRc). Clear-sky measurements from satellite preferentially sample drier, more stable conditions relative to the monthly-mean state. The resulting observational bias is evident when OLRc is stratified by vertical motion; differences to climate model OLRc of 15 Wm−2 occur over warm regions of strong ascent. Using data from the ECMWF 40-year reanalysis, an estimate of cloud longwave radiative effect is made which is directly comparable with standard climate model diagnostics. The impact of this methodology on the cancellation of cloud longwave and shortwave radiative forcing in the tropics is estimated.