31 resultados para DSSC Ru(II) tetrazoli fotoassorbitori

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the reaction of cis-Ru(1,10-phenanthroline)(2)Cl(2 center dot)2H(2)O with 2-picolinic acid in 1:1 molar ratio in degassed methanol-water mixture, [Ru(1,10-phenanthroline)(2)(2-picolinate)]PF6 center dot H2O (1) has been isolated as a red compound by adding excess of NH4PF6. Single crystal X-ray crystallography shows that the metal in 1 has an octahedral N5O coordination sphere. Complex 1 displays (MLCT)-M-1 bands in the 400-500 nm region in acetonitrile. Upon excitation at 435 nm, complex 1 gives rise to a broad emission band at 675 nm in acetonitrile at room temperature with a quantum yield of 0.0022. The energy of the MLCT state in 1 is estimated as 1.99 eV. Since, from cyclic voltammetry, the ground state potential of the Ru(II/III) couple in 1 is found to be 1.01 V vs NHE, the potential of the same couple in the excited state is calculated as -0.98 V vs NHE. The emissive state in 1 seems to be the triplet Ru(II) -> 1, 10-phenanthroline charge transfer state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Ru(2,2'-bipyridine)(2)(Hdpa)](BF4)(2) center dot 2H(2)O (1), [Ru(1,10-phenanthroline)(2)(Hdpa)] (PF6)(2) center dot CH2Cl2 (2) and [Ru(4,4,4',4'-tetramethyl-2,2'- bisoxazoline)(2)(Hdpa)] (PF6)(2) (3) are synthesized where Hdpa is 2,2'-dipyridylamine. The X-ray crystal structures of 1 and 2 have been determined. Hdpa in 1 and 2 is found to bind the metal via the two pyridyl N ends. Comparing the NMR spectra in DMSO-d(6), it is concluded that 3 has a similar structure. The pK(a) values (for the dissociation of the NH proton in Hdpa) of free Hdpa and its complexes are determined in acetonitrile by exploiting molar conductance. These correlate linearly with the chemical shift of the NH proton in the respective entities. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of cis-Ru(bisox)(2)Cl-2, where bisox is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, with excess of pyridine-2-carboxaldehyde (py-2-al) in 1:1 (v/v) methanol-water mixture under nitrogen atmosphere and subsequent addition of excess of NH4PF6 give [Ru(bisox)(2)(py-2-al)](PF6)(2)center dot H2O (1). Refluxing of 1 in dehydrated methanol in presence of triethylamine yields the corresponding hemiacetalate complex: [Ru(bisox)(2) (pyridine-2-(alpha-methoxymethanolato))] PF6 center dot 1.5H(2)O (2). Both the complexes have been characterised by single crystal X-ray crystallography, FTIR and NMR. In cyclic voltammetry in acetonitrile at a glassy carbon electrode, 2 displays a quasireversible Ru(II/III) couple at 1.08 V versus NHE which is not observed in 1. A tentative mechanism is proposed for the conversion of 1 to 2. DFT calculations with the LanL2DZ basis set have been performed to investigate these observations theoretically. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from previously reported cis-Ru(MeL)(2)Cl-2, where MeL is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, cis-Ru(MeL)(2)Br-2 (1), cis-Ru( MeL)(2)I-2 (2), cis-Ru(MeL)(2)(NCS)(2) center dot H2O (3), cis-Ru(MeL)(2)(N-3)(2) (4) and cis-[Ru(MeL)(2)(MeCN)(2)](PF6)(2) center dot (CH3)(2)CO (5) are synthesised. The X-ray crystal structures of complexes 1, 2, 3 and 5 have been determined. All the five new complexes have been characterized by FTIR, ESIMS and H-1 NMR. In cyclic voltammetry in acetonitrile at a glassy carbon electrode, the complexes display a quasireversible Ru(II/III) couple in the range 0.32-1.71 V versus NHE. The Ru(II/III) potentials yield a satisfactorily linear correlation with Chatt's ligand constants P-L for the monodantate ligands. From the intercept and by comparing the known situation in Ru(2,2'-bipyridine)(2)L-2, it is concluded that MeL, a non-aromatic diimine, is significantly more pi-acidic than 2,2'-bipyridine. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six Ru(II) complexes of formula [Ru(L)(2)(PPh3)(2)] have been prepared where LH = 4-(aryl)thiosemicarbazones of thiophen-2-carbaldehyde. X-ray crystal structures of five of the complexes are reported. In all the complexes ruthenium is six coordinate with a distorted octahedral cis-P-2, cis-N-2, trans-S-2 donor environment, and each of the two thiosemicarbazone ligands are coordinated in a bidentate fashion forming a four membered chelate ring. The complexes undergo a one-electron oxidation at similar to 0.5 V vs. Ag/AgCl. The EPR spectrum of the electrochemically oxidized solution at 100 K shows a rhombic signal, with transitions at g(1) = 2.27, g(2) = 2.00 and g(3) = 1.80. DFT calculations on one of the complexes suggest that there is 35% ruthenium and 17% sulfur orbital contribution to the HOMO. These results suggest that the assignment of metal atom oxidation states in these compounds is not unambiguous. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of 2,2'-dithiodipyridine (DTDP) with cis-Ru(bpy)(2)Cl-2 (bpy = 2,2'-bipyridine) and cis-Ru(phen)(2)Cl-2 (phen = 1,10-phenanthroline) respectively yields the dicationic species [Ru(bpy) (2)(DTDP)](2+) and [Ru(phen)(2) (DTDP)](2+) in which the S-S bond of DTDP remains intact. The S-S bond undergoes a reductive cleavage when DTDP is reacted with cis-Ru(bisox)(2)Cl-2 (bisox = 4,4,4',4'-tetramethyl-2,2'-bisoxazoline) under identical conditions to generate the monocationic species [Ru(bisox)(2)(2-thiolatopyridine)]. The intramolecular electron transfer between the metal and the S-S bond is found to be subtly controlled by the crystal field strength of the ancillary bidentate N-donor ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)(2)-3,5}-2,2':6',2 ''-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)(2), and [Ru(TPBr)(2)](PF6)(2), synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)(2) (7) and [Ru(TPPdCl)(2)]-(PF6)(2) (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)(2)](PF6)(2) (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono-and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (MLCT)-M-1 (Ru -> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)(2)](2+) indicates stabilization of the luminescent (MLCT)-M-3 state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)(2), are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)(2)} chromophoric unit and the (non)metalated NCN-pincer moiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redox-controlled luminescence quenching is presented for a new Ru(II)-bipyridine complex [Ru(bpy)(2)(1)](2+) where ligand 1 is an anthra[1,10] phenanthrolinequinone. The complex emits from a short-lived metal-to-ligand charge transfer, (MLCT)-M-3 state (tau = 5.5 ns in deaerated acetonitrile) with a low luminescence quantum yield (5 x 10(-4)). The emission intensity becomes significantly enhanced when the switchable anthraquinone unit is reduced to corresponding hydroquinone. On the contrary, chemical one-electron reduction of the anthraquinone moiety to semiquinone in aprotic tetrahydrofuran results in total quenching of the emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)(3) units attached via a phenylene linker to the thiophene rings. The ring-closure reaction in the nanosecond domain is sensitized by the metal complexes. Upon photoexcitation into the lowest Ru-to-bpy (MLCT)-M-1 state followed by intersystem crossing to emitting (MLCT)-M-3 states, photoreactive (IL)-I-3 states are populated by an efficient energy-transfer process. The involvement of these (IL)-I-3 states explains the quantum yield of the photocyclization, which is independent of the excitation wavelength but decreases strongly in the presence of dioxygen. This behavior differs substantially from the photocyclization of the nonemissive dithienylperfluorocyclopentene free ligand, which occurs from the lowest (IL)-I-1 state on a picosecond time scale and is insensitive to oxygen quenching. Cyclic voltammetric studies have also been performed to gain further insight into the energetics of the system. The very high photocyclization quantum yields, far above 0.5 in both cases, are ascribed to the strong steric repulsion between the bulky substituents on the dithienylperfluorocyclopentene bridge bearing the chelating bipyridine sites or the Ru(bpy)(3) moieties, forcing the system to adopt nearly exclusively the reactive antiparallel conformation. In contrast, replacement of both Ru(II) centers by Os(II) completely prevents the photocyclization reaction upon light excitation into the low-lying Os-to-bpy (MLCT)-M-1 state. The photoreaction can only be triggered by optical population of the higher lying (IL)-I-1 excited state of the central photochromic unit, but its yield is low due to efficient energy transfer to the luminescent lowest (MLCT)-M-3 state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]2+, by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-[Ru(TAP)2(dppz)]2+, whereas those for the lambda enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo-oxidation by Λ [Ru(TAP)2(dppz)]2+ have been compared in 5′-{CCGGATCCGG}2 and 5′-{CCGGTACCGG}2 using ps/ns transient visible and time-resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5′-TA-3′ vs. 5′-AT-3′ binding preference predicted by X-ray crystallography. The TRIR spectra also reveal the differences in binding sites in the two oligonucleotides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intercalating [Ru(TAP)2(dppz)]2+ complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both L- and D-enantiomers of [Ru(TAP)2(dppz)]2+ in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and ps-time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for L- and D-complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using bis(3,5-dimethylpyrazol-1-yl)methane as an N-N donor ligand, a trans-[Ru-III(N-N)(2)Cl-2](+) core has been isolated from the direct reaction of the ligand with RuCl3 center dot xH(2)O and characterized structurally for the. first time. The core displays a rhombic EPR spectrum and a quasireversible Ru(II/III) couple with an E-1/2 of -0.34 V versus NHE. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel Ru(II) complex containing an electron-poor, highly fluorinated PCPArF pincer ligand has been synthesized in good yield via a transcyclometalation reaction. The complex has been fully characterized by elemental analysis, 1D and 2D NMR techniques, LTV-vis spectroscopy, and cyclic voltammetry. Single-crystal X-ray structural analysis and DFT calculations were performed. The structural features and electronic properties of the remarkably stable PCPArF-Ru(II) complex 4 have been investigated and show unanticipated differences compared to its protio analogue.