16 resultados para DOPED INORGANIC MATERIALS

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent work exploring the use of block copolymer vesicles and tubules is reviewed. The stability and toughness of block copolymer vesicles are enhanced compared to those formed by low molar mass amphiphiles. Functionality can also readily be introduced through the polymer chemistry or by incorporating additional components (for example pore-forming membrane proteins). This design flexibility leads to numerous potential applications in encapsulation, in targeted drug delivery, templating of inorganic materials and many others.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ordering of block copolymers in thin films is reviewed, starting, from the fundamental principles and extending to recent promising developments as templates for nanolithography which may find important applications in the semiconductor industry. Ordering in supported thin films of symmetric and asymmetric AB diblock and ABA triblock copolymers is discussed, along with that of more complex materials such as ABC triblocks and liquid crystalline block copolymers Techniques to prepare thin films, and to characterise ordering within them, are summarized. Several methods to align Hock copolymer nanostructures, important in several applications are outlined A number of potential applications in nanolithography, production of porous materials, templating. and patterning of organic and inorganic materials are then presented. The influence of crystallization on the morphology of a block copolymer film is briefly discussed, as are structures in grafted block copolymer films. (C) 2009 Elsevier Ltd All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sol-gel derived inorganic materials are of interest as hosts for non-linear optically active guest molecules and they offer particular advantages in the field of non-linear optics. Orientationally ordered glasses have been prepared using a sol-gel system based on tetramethoxysilane, methyltrimethoxysilane and a non-linear optical chromophore Disperse Red 1. The novel technique of photo-induced poling was used to generate enhanced levels of polar order. The level of enhancement is strongly dependent on the extent of gelation and an optimum preparation time of ∼100 h led to an enhancement factor of ∼5. Films prepared in this manner exhibited a high stability of the polar order.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dehydriding and rehydriding of sodium aluminium hydride, NaAlR4, is kinetically enhanced and rendered reversible in the solid state upon doping with a small amount of catalyst species, such as titanium, zirconium or tin. The catalyst doped hydrides appear to be good candidates for development as hydrogen carriers for onboard proton exchange membrane (PEM) fuel cells because of their relatively low operation temperatures (120-150 degrees C) and high hydrogen carrying capacities (4-5 wt.%). However, the nature of the active catalyst species and the mechanism of catalytic action are not yet known. In particular, using combinations of Ti and Sri compounds as dopants, a cooperative catalyst effect of the metals Ti and Sn in enhancing the hydrogen uptake and release kinetics is hereby reported. In this paper, characterization techniques including XRD, XPS, TEM, EDS and SEM have been applied on this material. The results suggest that the solid state phase changes during the hydriding and dehydriding processes are assisted through the interaction of a surface catalyst. A mechanism is proposed to explain the catalytic effect of the Sn/Ti double dopants on this hydride.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we describe the synthesis of a variety of MCM-41 type hexagonal and SBA-1 type cubic mesostructures and mesoporous silicious materials employing a novel synthesis concept based on polyacrylic acid (Pac)-C(n)TAB complexes as backbones of the developing structures. The ordered porosity of the solids was established by XRD and TEM techniques. The synthesis concept makes use of Pac-C(n)TAB nanoassemblies as a preformed scaffold, formed by the gradual increase of pH. On this starting matrix the inorganic precursor species SiO2 precipitate via hydrolysis of TEOS under the influence of increasing pH. The molecular weight (MW) of Pac, as well as the length of carbon chain in C,TAB, determine the physical and structural characteristics of the obtained materials. Longer chain surfactants (C(16)TAB) lead to the formation of hexagonal phase, while shorter chain surfactants (C(14)TAB, C(12)TAB) favor the SBA-1 phase. Lower MW of Pac (approximate to2000) leads to better-organized structures compared to higher MW ( 450,000), which leads to worm-like mesostructures. Cell parameters and pore size increase with increasing polyelectrolyte and/or surfactant chain, while at the same time SEM photography reveals that the particle size decreases. Conductivity experiments provide some insight into the proposed self-assembling pathway. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions of the low-temperature polymorph of copper(I) cyanide (LT-CuCN) with concentrated aqueous alkali-metal halide solutions have been investigated. At room temperature, KX (X = Br and I) and CsX (X = Cl, Br, and I) produce the addition products K[Cu-2(CN)(2)Br](H2O)-H-. (I), K-3[Cu-6(CN)(6)I-3](.)2H(2)O (II), Cs[Cu-3(CN)(3)Cl] (III), Cs[Cu-3(CN)(3)Br] (IV), and Cs-2[Cu-4(CN)(4)I-2](H2O)-H-. (V), with 3-D frameworks in which the -(CuCN)- chains present in CuCN persist. No reaction occurs, however, with NaX (X = Cl, Br, I) or KCl. The addition compounds, I-V, reconvert to CuCN when washed. Both low- and high-temperature polymorphs of CuCN (LT- and HT-CuCN) are produced, except in the case of Cs[Cu-3(CN)(3)Cl] (III), which converts only to LT-CuCN. Heating similar AX-CuCN reaction mixtures under hydrothermal conditions at 453 K for 1 day produces single crystals of I-V suitable for structure determination. Under these more forcing conditions, reactions also occur with NaX (X = Cl, Br, I) and KCl. NaBr and KCl cause some conversion of LT-CuCN into HT-CuCN, while NaCl and NaI, respectively, react to form the mixed-valence Cu(I)/Cu(II) compounds [Cu-II(OH2)(4)][Cu-4(I)(CN)(6)], a known phase, and [Cu-II(OH2)(4)][Cu-4(I)(CN)(4)I-2] (VI), a 3-D framework, which contains infinite -(CuCN)- chains. After 3 days of heating under hydrothermal conditions, the reaction between KI and CuCN produces [Cu-II(OH2)(4)][Cu-2(I)(CN)I-2](2) (VII), in which the CuCN chains are broken into single Cu-CN-Cu units, which in turn are linked into chains via iodine atoms and then into layers via long Cu-C and Cu-Cu interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis and modeling of X-ray and neutron Bragg and total diffraction data show that the compounds referred to in the literature as “Pd(CN)2”and“Pt(CN)2” are nanocrystalline materials containing of small sheets of vertex-sharing square-planar M(CN)4 units, layered in a disordered manner with an intersheet separation of 3.44 A at 300 K. The small size of the crystallites means that the sheets’ edges form a significant fraction of each material. The Pd(CN)2 nanocrystallites studied using total neutron diffraction are terminated by water and the Pt(CN)2 nanocrystallites by ammonia, in place of half of the terminal cyanide groups, thus maintaining charge neutrality. The neutron samples contain sheets of approximate dimensions 30 A x 30 A. For sheets of the size we describe, our structural models predict compositions of Pd(CN)2-xH2O and Pt(CN)2-yNH3 (x = y = 0.29). These values are in good agreement with those obtained from total neutron diffraction and thermal analysis, and are also supported by infrared and Raman spectroscopy measurements. It is also possible to prepare related compounds Pd(CN)2-pNH3 and Pt(CN)2-qH2O, in which the terminating groups are exchanged. Additional samples showing sheet sizes in the range 10 A x 10 A (y = 0.67) to 80 A x 80 A (p = q = 0.12), as determined by X-ray diffraction, have been prepared. The related mixed-metal phase, Pd1/2Pt1/2(CN)2-qH2O(q = 0.50), is also nanocrystalline (sheet size 15 A x 15 A). In all cases, the interiors of the sheets are isostructural with those found in Ni(CN)2. Removal of the final traces of water or ammonia by heating results in decomposition of the compounds to Pd and Pt metal, or in the case of the mixed-metal cyanide, the alloy, Pd1/2Pt1/2, making it impossible to prepare the simple cyanides, Pd(CN)2, Pt(CN)2 or Pd1/2Pt1/2(CN)2, by this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LaMn and LaCo doped barium hexaferrites of formula Ba(1-x)LaxFe(12-x)MxO19 (M=Mn, Co) (x=0.05 to 0.40) were prepared with an improved co-precipitation/molten salt method. For the synthesis, aqueous solutions of the appropriate metal chlorides were prepared in the ratio required except that the initial mole ratio of Fe and dopants to Ba was chosen to be 11:1, and then mixed with excess Na2CO3. The solutions were then cooled, filtered off, dried, then mixed with KCl flux, and heated at 450 degrees C and for 2 h. The temperature was then raised to 950 degrees C and kept for 4 h, then cooled. This new synthesis method, which employs a lower temperature and shorter reaction time, gives products with improved crystallinity and purity while the saturation magnetization and coercivity values are comparable with those synthesized via the high temperature method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of hexagonal barium ferrite (BaFe12O19) was studied under hydrothermal conditions by a method in which a significant amount of ferrous chloride was introduced along side ferric chloride among the starting materials. Though all of the Fe2+ ions in the starting material were converted to Fe3+ ions in the final product, Fe2+ was confirmed to participate differently from the Fe3+ used in the conventional method in the mechanism of forming barium ferrite. Indeed the efficiency of the synthesis and the quality of the product and the lack of impurities such as Fe2O3 and BaFe2O4 were improved when Fe2+ was included. However, the amount of ferrous ions that could be included to obtain the desired product was limited with an optimum ratio of 2:8 for FeCl2/FeCl3 when only 2h of reaction time were needed. It was also found that the role of trivalent Fe3+ could be successfully replaced by Al3+. Up to 50% of their on could be replaced by Al3+ in the reactants to produce Al- doped products. It was also found that the ratio of Fe2+/M3+ could be increased in the presence of Al3+ to produce high quality barium ferrite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterisation of novel covalent organic-inorganic architectures containing organically-functionalised supertetrahedra is described. The structures of these unique materials consist of one-dimensional zigzag chains or of honeycomb-type layers, in which gallium-sulfide supertetrahedral clusters and dipyridyl ligands alternate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two semiconducting hybrid gallium selenides, [Ga6Se9(C6H14N2)4][H2O] (1) and [C6H14N2][Ga4Se6(C6H14N2)2] (2), were prepared using a solvothermal method in the pres-ence of 1,2-diaminocyclohexane (1,2-DACH). Both materials consist of neutral inorganic layers, in which 1,2-DACH is co-valently bonded to gallium. In (1), the organic amine acts as a monodentate and a bidentate ligand, while in (2) bidentate and uncoordinated 1,2-DACH molecules coexist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetrahedral chalcogenide clusters, with their well-defined molecular structures and interesting properties, are attractive building blocks for hybrid materials, in which porosity may be integrated with electronic or optical properties. Linkage of tetrahedral clusters often occurs through bridging chalcogenolate ligands, and results in extended structures of inorganic connectivity. However, linkage of tetrahedral clusters via organic ligands is also possible and a number of coordination polymers have already been reported. Recent advances on the synthesis and crystal structures of extended hybrid structures based on tetrahedral clusters are described here.