12 resultados para DMSP

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study here the injection and transport of ions in the convection-dominated region of the Earth’s magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001) survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992). The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of _1 keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convectionrelated time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by nonreconnection coupling. At higher energies (_2–20 keV), we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence the location and behaviour of the plasma populations in the magnetosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transpolar voltages observed during traversals of the polar cap by the Defense Meteorological Satellite Program (DMSP) F-13 spacecraft during 2001 are analyzed using the expanding-contracting polar cap model of ionospheric convection. Each of the 10,216 passes is classified by its substorm phase or as a steady convection event (SCE) by inspection of the AE indices. For all phases, we detect a contribution to the transpolar voltage by reconnection in both the dayside magnetopause and in the crosstail current sheet. Detection of the IMF influence is 97% certain during quiet intervals and >99% certain during substorm/SCE growth phases but falls to 75% in substorm expansion phases: It is only 27% during SCEs. Detection of the influence of the nightside voltage is only 19% certain during growth phases, rising during expansion phases to a peak of 96% in recovery phases: During SCEs, it is >99%. The voltage during SCEs is dominated by the nightside, not the dayside, reconnection. On average, substorm expansion phases halt the growth phase rise in polar cap flux rather than reversing it. The main destruction of the excess open flux takes place during the 6- to 10-hour interval after the recovery phase (as seen in AE) and at a rate which is relatively independent of polar cap flux because the NENL has by then retreated to the far tail. The best estimate of the voltage associated with viscous-like transfer of closed field lines into the tail is around 10 kV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using data from the EISCAT (European Incoherent Scatter) VHF radar and DMSP (Defense Meteorological Satellite Program) spacecraft passes, we study the motion of the dayside open-closed field line boundary during two substorm cycles. The satellite data show that the motions of ion and electron temperature boundaries in EISCAT data, as reported by Moen et al. (2004), are not localised around the radar; rather, they reflect motions of the open-closed field line boundary at all MLT throughout the dayside auroral ionosphere. The boundary is shown to erode equatorward when the IMF points southward, consistent with the effect of magnetopause reconnection. During the substorm expansion and recovery phases, the dayside boundary returns poleward, whether the IMF points northward or southward. However, the poleward retreat was much faster during the substorm for which the IMF had returned to northward than for the substorm for which the IMF remained southward – even though the former substorm is much the weaker of the two. These poleward retreats are consistent with the destruction of open flux at the tail current sheet. Application of a new analysis of the peak ion energies at the equatorward edge of the cleft/cusp/mantle dispersion seen by the DMSP satellites identifies the dayside reconnection merging gap to extend in MLT from about 9.5 to 15.5 h for most of the interval. Analysis of the boundary motion, and of the convection velocities seen near the boundary by EISCAT, allows calculation of the reconnection rate (mapped down to the ionosphere) from the flow component normal to the boundary in its own rest frame. This reconnection rate is not, in general, significantly different from zero before 06:45 UT (MLT<9.5 h) – indicating that the X line footprint expands over the EISCAT field-of-view to earlier MLT only occasionally and briefly. Between 06:45 UT and 12:45UT (9.5DMSP passes. As well as direct control by the IMF on longer timescales, the derived reconnection rate variation shows considerable pulsing on timescales of 2–20 min during periods of steady southward IMF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continuous band of high ion temperature, which persisted for about 8 h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00– 15:00MLT) auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti , respectively) have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti , and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti , recurring on _10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the openclosed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfv´enic) magnetosheath electrons and the response in the ionospheric convection, conveyed to the ionosphere by the interior Alfv´en wave. It represents a candidate footprint of the low-latitude boundary mixing layer on sunward convecting open flux

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interpretation of structure in cusp ion dispersions is important for helping to understand the temporal and spatial structure of magnetopause reconnection. “Stepped” and “sawtooth” signatures have been shown to be caused by temporal variations in the reconnection rate under the same physical conditions for different satellite trajectories. The present paper shows that even for a single satellite path, a change in the amplitude of any reconnection pulses can alter the observed signature and even turn sawtooth into stepped forms and vice versa. On 20 August 1998, the Defense Meteorological Satellite Program (DMSP) craft F-14 crossed the cusp just to the south of Longyearbyen, returning on the following orbit. The two passes by the DMSP F-14 satellites have very similar trajectories and the open-closed field line boundary (OCB) crossings, as estimated from the SSJ/4 precipitating particle data and Polar UVI images, imply a similarly-shaped polar cap, yet the cusp ion dispersion signatures differ substantially. The cusp crossing at 08:54 UT displays a stepped ion dispersion previously considered to be typical of a meridional pass, whereas the crossing at 10:38 UT is a sawtooth form ion dispersion, previously considered typical of a satellite travelling longitudinally with respect to the OCB. It is shown that this change in dispersed ion signature is likely to be due to a change in the amplitude of the pulses in the reconnection rate, causing the stepped signature. Modelling of the low-energy ion cutoff under different conditions has reproduced the forms of signature observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the high-latitude plasma flow variations associated with a periodic (∼8 min) sequence of auroral forms moving along the polar cap boundary, which appear to be the most regularly occuring dayside auroral phenomenon under conditions of southward directed interplanetary magnetic field. Satellite data on auroral particle precipitation and ionospheric plasma drifts from DMSP F10 and F11 are combined with ground-based optical and ion flow measurements for January 7, 1992. Ionospheric flow measurements of 10-s resolution over the range of invariant latitudes from 71° to 76° were obtained by operating both the European incoherent scatter (EISCAT) UHF and VHF radars simultaneously. The optical site (Ny Ålesund, Svalbard) and the EISCAT radar field of view were located in the postnoon sector during the actual observations. The West Greenland magnetometers provided information about temporal variations of high-latitude convection in the prenoon sector. Satellite observations of polar cap convection in the northern and southern hemispheres show a standard two-cell pattern consistent with a prevailing negative By component of the interplanetary magnetic field. The 630.0 nm auroral forms located poleward of the persistent cleft aurora and the flow reversal boundary in the ∼1440–1540 MLT sector were observed to coincide with magnetosheath-like particle precipitation and a secondary population of higher energy ions, and they propagated eastward/tailward at speeds comparable with the convection velocity. It is shown that these optical events were accompanied by bursts of sunward (return) flow at lower latitudes in both the morning and the afternoon sectors, consistent with a modulation of Dungey cell convection. The background level of convection was low in this case (Kp =2+). The variability of the high-latitude convection may be explained as resulting from time-varying reconnection at the magnetopause. In that case this study indicates that time variations of the reconnection rate effectively modulates ionospheric convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of zero-flow equilibria of the magnetosphere-ionosphere system leads to a large number of predictions concerning the ionospheric signatures of pulsed magnetopause reconnection. These include: poleward-moving F-region electron temperature enhancements and associated transient 630nm emission; associated poleward plasma flow which, compared to the pulsed variation of the reconnection rate, is highly smoothed by induction effects; oscillatory latitudinal motion of the open/closed field line boundary; phase lag of plasma flow enhancements after equatorward motions of the boundary; azimuthal plasma flow bursts, coincident in time and space with the 630nm-dominant auroral transients, only when the magnitude of the By component of the interplanetary magnetic field (IMF) is large; azimuthal-then-poleward motion of 630nm-dominant transients at a velocity which at all times equals the internal plasma flow velocity; 557.7nm-dominant transients on one edge of the 630nm-dominant transient (initially, and for large |By|, on the poleward or equatorward edge depending on the polarity of IMF By); tailward expansion of the flow response at several km s-1; and discrete steps in the cusp ion dispersion signature between the polewardmoving structures. This paper discusses these predictions and how all have recently been confirmed by combinations of observations by optical instruments on the Svalbard Islands, the EISCAT radars and the DMSP and DE satellites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is presented which allows estimation of the variation of the rate of magnetic reconnection at the day side magnetopause. This is achieved using observations of the cusp particle precipitation made by low-altitude polar-orbiting spacecraft. In this paper we apply the technique to a previously published example of a cusp intersection by the DMSP F7 satellite. It is shown that the cusp signature in this case was produced by three separate bursts of reconnection which were of the order of 10 min apart, each lasting roughly 1 min. This is similar to the variation of reconnection rate which is required to explain typical flux transfer event signatures at the magnetopause.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present observations of a transient event in the dayside auroral ionosphere at magnetic noon. F-region plasma convection measurements were made by the EISCAT radar, operating in the beamswinging “Polar” experiment mode, and simultaneous observations of the dayside auroral emissions were made by optical meridian-scanning photometers and all-sky TV cameras at Ny Ålesund, Spitzbergen. The data were recorded on 9 January 1989, and a sequence of bursts of flow, with associated transient aurora, were observed between 08:45 and 11:00 U.T. In this paper we concentrate on an event around 09:05 U.T. because that is very close to local magnetic noon. The optical data show a transient intensification and widening (in latitude) of the cusp/cleft region, as seen in red line auroral emissions. Over an interval of about 10 min, the band of 630 nm aurora widened from about 1.5° of invariant latitude to over 5° and returned to its original width. Embedded within the widening band of 630 nm emissions were two intense, active 557.7 nm arc fragments with rays which persisted for about 2 min each. The flow data before and after the optical transient show eastward flows, with speeds increasing markedly with latitude across the band of 630 nm aurora. Strong, apparently westward, flows appeared inside the band while it was widening, but these rotated round to eastward, through northward, as the band shrunk to its original width. The observed ion temperatures verify that the flow speeds during the transient were, to a large extent, as derived using the beamswinging technique; but they also show that the flow increase initially occurred in the western azimuth only. This spatial gradient in the flow introduces ambiguity in the direction of these initial flows and they could have been north-eastward rather than westward. However, the westward direction derived by the beamswinging is consistent with the motion of the colocated and coincident active 557.7 nm arc fragment, A more stable transient 557.7 nm aurora was found close to the shear between the inferred westward flows and the persisting eastward flows to the North. Throughout the transient, northward flow was observed across the equatorward boundary of the 630 nm aurora. Interpretation of the data is made difficult by lack of IMF data, problems in distinguishing the cusp and cleft aurora and uncertainty over which field lines are open and which are closed. However, at magnetic noon there is a 50% probability that we were observing the cusp, in which case from its southerly location we infer that the IMF was southward and many features are suggestive of time-varying reconnection at a single X-line on the dayside magnetopause. This IMF orientation is also consistent with the polar rain precipitation observed simultaneously by the DMSP-F9 satellite in the southern polar cap. There is also a 25% chance that we were observing the cleft (or the mantle poleward of the cleft). In this case we infer that the IMF was northward and the transient is well explained by reconnection which is not only transient in time but occurs at various sites located randomly on the dayside magnetopause (i.e. patchy in space). Lastly, there is a 25% chance that we were observing the cusp poleward of the cleft, in which case we infer that IMF Bz was near zero and the transient is explained by a mixture of the previous two interpretations.