4 resultados para DINUCLEOTIDE

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carboncarbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary alpha-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary alpha-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type 11 ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl) phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18 02 atmosphere were performed. One atom of 180, was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary a-carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsatellite lengths change over evolutionary time through a process of replication slippage. A recently proposed model of this process holds that the expansionary tendencies of slippage mutation are balanced by point mutations breaking longer microsatellites into smaller units and that this process gives rise to the observed frequency distributions of uninterrupted microsatellite lengths. We refer to this as the slippage/point-mutation theory. Here we derive the theory's predictions for interrupted microsatellites comprising regions of perfect repeats, labeled segments, separated by dinucleotide interruptions containing point mutations. These predictions are tested by reference to the frequency distributions of segments of AC microsatellite in the human genome, and several predictions are shown not to be supported by the data, as follows. The estimated slippage rates are relatively low for the first four repeats, and then rise initially linearly with length, in accordance with previous work. However, contrary to expectation and the experimental evidence, the inferred slippage rates decline in segments above 10 repeats. Point mutation rates are also found to be higher within microsatellites than elsewhere. The theory provides an excellent fit to the frequency distribution of peripheral segment lengths but fails to explain why internal segments are shorter. Furthermore, there are fewer microsatellites with many segments than predicted. The frequencies of interrupted microsatellites decline geometrically with microsatellite size measured in number of segments, so that for each additional segment, the number of microsatellites is 33.6% less. Overall we conclude that the detailed structure of interrupted microsatellites cannot be reconciled with the existing slippage/point-mutation theory of microsatellite evolution, and we suggest that microsatellites are stabilized by processes acting on interior rather than on peripheral segments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.