45 resultados para DIFFERENT GENETIC MODELS
em CentAUR: Central Archive University of Reading - UK
Resumo:
An example of the evolution of the interacting behaviours of parents and progeny is studied using iterative equations linking the frequencies of the gametes produced by the progeny to the frequencies of the gametes in the parental generation. This population genetics approach shows that a model in which both behaviours are determined by a single locus can lead to a stable equilibrium in which the two behaviours continue to segregate. A model in which the behaviours are determined by genes at two separate loci leads eventually to fixation of the alleles at both loci but this can take many generations of selection. Models of the type described in this paper will be needed to understand the evolution of complex behaviour when genomic or experimental information is available about the genetic determinants of behaviour and the selective values of different genomes. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The effect of variation of the water model on the temperature dependence of protein and hydration water dynamics is examined by performing molecular dynamics simulations of myoglobin with the TIP3P, TIP4P, and TIP5P water models and the CHARMM protein force field at temperatures between 20 and 300 K. The atomic mean-square displacements, solvent reorientational relaxation times, pair angular correlations between surface water molecules, and time-averaged structures of the protein are all found to be similar, and the protein dynamical transition is described almost indistinguishably for the three water potentials. The results provide evidence that for some purposes changing the water model in protein simulations without a loss of accuracy may be possible.
Resumo:
Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.
Recent developments in genetic data analysis: what can they tell us about human demographic history?
Resumo:
Over the last decade, a number of new methods of population genetic analysis based on likelihood have been introduced. This review describes and explains the general statistical techniques that have recently been used, and discusses the underlying population genetic models. Experimental papers that use these methods to infer human demographic and phylogeographic history are reviewed. It appears that the use of likelihood has hitherto had little impact in the field of human population genetics, which is still primarily driven by more traditional approaches. However, with the current uncertainty about the effects of natural selection, population structure and ascertainment of single-nucleotide polymorphism markers, it is suggested that likelihood-based methods may have a greater impact in the future.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
Mathematical models devoted to different aspects of building studies and brought about a significant shift in the way we view buildings. From this background a new definition of building has emerged known as intelligent building that requires integration of a variety of computer-based complex systems. Research relevant to intelligent continues to grow at a much faster pace. This paper is a review of different mathematical models described in literature, which make use of different mathematical methodologies, and are intended for intelligent building studies without complex mathematical details. Models are discussed under a wide classification. Mathematical abstract level of the applied models is detailed and integrated with its literature. The goal of this paper is to present a comprehensive account of the achievements and status of mathematical models in intelligent building research. and to suggest future directions in models.
Resumo:
though discrete cell-based frameworks are now commonly used to simulate a whole range of biological phenomena, it is typically not obvious how the numerous different types of model are related to one another, nor which one is most appropriate in a given context. Here we demonstrate how individual cell movement on the discrete scale modeled using nonlinear force laws can be described by nonlinear diffusion coefficients on the continuum scale. A general relationship between nonlinear force laws and their respective diffusion coefficients is derived in one spatial dimension and, subsequently, a range of particular examples is considered. For each case excellent agreement is observed between numerical solutions of the discrete and corresponding continuum models. Three case studies are considered in which we demonstrate how the derived nonlinear diffusion coefficients can be used to (a) relate different discrete models of cell behavior; (b) derive discrete, intercell force laws from previously posed diffusion coefficients, and (c) describe aggregative behavior in discrete simulations.
Resumo:
Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.
Resumo:
Climate modeling is a complex process, requiring accurate and complete metadata in order to identify, assess and use climate data stored in digital repositories. The preservation of such data is increasingly important given the development of ever-increasingly complex models to predict the effects of global climate change. The EU METAFOR project has developed a Common Information Model (CIM) to describe climate data and the models and modelling environments that produce this data. There is a wide degree of variability between different climate models and modelling groups. To accommodate this, the CIM has been designed to be highly generic and flexible, with extensibility built in. METAFOR describes the climate modelling process simply as "an activity undertaken using software on computers to produce data." This process has been described as separate UML packages (and, ultimately, XML schemas). This fairly generic structure canbe paired with more specific "controlled vocabularies" in order to restrict the range of valid CIM instances. The CIM will aid digital preservation of climate models as it will provide an accepted standard structure for the model metadata. Tools to write and manage CIM instances, and to allow convenient and powerful searches of CIM databases,. Are also under development. Community buy-in of the CIM has been achieved through a continual process of consultation with the climate modelling community, and through the METAFOR team’s development of a questionnaire that will be used to collect the metadata for the Intergovernmental Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs.
Resumo:
Matheron's usual variogram estimator can result in unreliable variograms when data are strongly asymmetric or skewed. Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. This paper examines the effects of underlying asymmetry on the variogram and on the accuracy of prediction, and the second one examines the effects arising from outliers. Standard geostatistical texts suggest ways of dealing with underlying asymmetry; however, this is based on informed intuition rather than detailed investigation. To determine whether the methods generally used to deal with underlying asymmetry are appropriate, the effects of different coefficients of skewness on the shape of the experimental variogram and on the model parameters were investigated. Simulated annealing was used to create normally distributed random fields of different size from variograms with different nugget:sill ratios. These data were then modified to give different degrees of asymmetry and the experimental variogram was computed in each case. The effects of standard data transformations on the form of the variogram were also investigated. Cross-validation was used to assess quantitatively the performance of the different variogram models for kriging. The results showed that the shape of the variogram was affected by the degree of asymmetry, and that the effect increased as the size of data set decreased. Transformations of the data were more effective in reducing the skewness coefficient in the larger sets of data. Cross-validation confirmed that variogram models from transformed data were more suitable for kriging than were those from the raw asymmetric data. The results of this study have implications for the 'standard best practice' in dealing with asymmetry in data for geostatistical analyses. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.
Resumo:
In conventional phylogeographic studies, historical demographic processes are elucidated from the geographical distribution of individuals represented on an inferred gene tree. However, the interpretation of gene trees in this context can be difficult as the same demographic/geographical process can randomly lead to multiple different genealogies. Likewise, the same gene trees can arise under different demographic models. This problem has led to the emergence of many statistical methods for making phylogeographic inferences. A popular phylogeographic approach based on nested clade analysis is challenged by the fact that a certain amount of the interpretation of the data is left to the subjective choices of the user, and it has been argued that the method performs poorly in simulation studies. More rigorous statistical methods based on coalescence theory have been developed. However, these methods may also be challenged by computational problems or poor model choice. In this review, we will describe the development of statistical methods in phylogeographic analysis, and discuss some of the challenges facing these methods.
Resumo:
Stephens and Donnelly have introduced a simple yet powerful importance sampling scheme for computing the likelihood in population genetic models. Fundamental to the method is an approximation to the conditional probability of the allelic type of an additional gene, given those currently in the sample. As noted by Li and Stephens, the product of these conditional probabilities for a sequence of draws that gives the frequency of allelic types in a sample is an approximation to the likelihood, and can be used directly in inference. The aim of this note is to demonstrate the high level of accuracy of "product of approximate conditionals" (PAC) likelihood when used with microsatellite data. Results obtained on simulated microsatellite data show that this strategy leads to a negligible bias over a wide range of the scaled mutation parameter theta. Furthermore, the sampling variance of likelihood estimates as well as the computation time are lower than that obtained with importance sampling on the whole range of theta. It follows that this approach represents an efficient substitute to IS algorithms in computer intensive (e.g. MCMC) inference methods in population genetics. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviour-based models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley's declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.