11 resultados para DATE
em CentAUR: Central Archive University of Reading - UK
Correlating Bayesian date estimates with climatic events and domestication using a bovine case study
Resumo:
The tribe Bovini contains a number of commercially and culturally important species, such as cattle. Understanding their evolutionary time scale is important for distinguishing between post-glacial and domestication-associated population expansions, but estimates of bovine divergence times have been hindered by a lack of reliable calibration points. We present a Bayesian phylogenetic analysis of 481 mitochondrial D-loop sequences, including 228 radiocarbon-dated ancient DNA sequences, using a multi-demographic coalescent model. By employing the radiocarbon dates as internal calibrations, we co-estimate the bovine phylogeny and divergence times in a relaxed-clock framework. The analysis yields evidence for significant population expansions in both taurine and zebu cattle, European aurochs and yak clades. The divergence age estimates support domestication-associated expansion times (less than 12 kyr) for the major haplogroups of cattle. We compare the molecular and palaeontological estimates for the Bison-Bos divergence.
Resumo:
Tuber dormancy enables yams to survive in the ground during the dry season and post-harvest storage. Three clones of Dioscorea rotundata were harvested after five intervals and then stored in a cooler (20.6°C) or at ambient temperature (27.8°C). The time from harvest to sprouting was shorter as harvest was delayed. The period from sowing to sprouting for each clone was similar for tubers harvested from 140 days after planting, but tubers harvested earlier took longer to sprout. The cooler temperature delayed sprouting. Tubers of two clones sprouted after only 70 days of crop growth. If the dormancy period of these young tubers can be broken, the generation time of yam crop improvement programmes could be considerably reduced.
Resumo:
In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.
Resumo:
Combining geological knowledge with proved plus probable ('2P') oil discovery data indicates that over 60 countries are now past their resource-limited peak of conventional oil production. The data show that the global peak of conventional oil production is close. Many analysts who rely only on proved ('1P') oil reserves data draw a very different conclusion. But proved oil reserves contain no information about the true size of discoveries, being variously under-reported, over-reported and not reported. Reliance on 1P data has led to a number of misconceptions, including the notion that past oil forecasts were incorrect, that oil reserves grow very significantly due to technology gain, and that the global supply of oil is ensured provided sufficient investment is forthcoming to 'turn resources into reserves'. These misconceptions have been widely held, including within academia, governments, some oil companies, and organisations such as the IEA. In addition to conventional oil, the world contains large quantities of non-conventional oil. Most current detailed models show that past the conventional oil peak the non-conventional oils are unlikely to come on-stream fast enough to offset conventional's decline. To determine the extent of future oil supply constraints calculations are required to determine fundamental rate limits for the production of non-conventional oils, as well as oil from gas, coal and biomass, and of oil substitution. Such assessments will need to examine technological readiness and lead-times, as well as rate constraints on investment, pollution, and net-energy return. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Date palm (Pheonix dactylifera) fruit contains an array of polyphenols, although how these levels alter with cultivar type and fruit ripening is unclear. Utilizing HPLC and LC-ESI-MS/MS, this study define and quantify an array of hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids in three common cultivars of dates (Ajwa, Barni, and Khalas) at the main ripening stages (kimri, khalal, rutab, and tamr). Polyphenols were at highest concentration at earlier stages of ripening, with concentrations reducing with ripening. The khalal stage of the Ajwa cultivar contained significantly higher (P < 0.001) levels of polyphenols than measured in the Barni and Khalas dates at the same degree of ripening. Furthermore, the Ajwa cultivar was the only one to contain significant quantities of anthocyanidins, in particular at the khalal stage. These data suggest dates are a significant source of polyphenols, especially if the earlier edible ripening stages are consumed or utilized as food ingredients.
Resumo:
The Homeric epics are among the greatest masterpieces of literature, but when they were produced is not known with certainty. Here we apply evolutionary-linguistic phylogenetic statistical methods to differences in Homeric, Modern Greek and ancient Hittite vocabulary items to estimate a date of approximately 710–760 BCE for these great works. Our analysis compared a common set of vocabulary items among the three pairs of languages, recording for each item whether the words in the two languages were cognate – derived from a shared ancestral word – or not. We then used a likelihood-based Markov chain Monte Carlo procedure to estimate the most probable times in years separating these languages given the percentage of words they shared, combined with knowledge of the rates at which different words change. Our date for the epics is in close agreement with historians' and classicists' beliefs derived from historical and archaeological sources.
Resumo:
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.
Resumo:
The reported inverse association between the intake of plant-based foods and a reduction in the prevalence of colorectal cancer may be partly mediated by interactions between insoluble fibre and (poly)phenols and the intestinal microbiota. In the present study, we assessed the impact of palm date consumption, rich in both polyphenols and fibre, on the growth of colonic microbiota and markers of colon cancer risk in a randomised, controlled, cross-over human intervention study. A total of twenty-two healthy human volunteers were randomly assigned to either a control group (maltodextrin-dextrose, 37·1 g) or an intervention group (seven dates, approximately 50 g). Each arm was of 21 d duration and was separated by a 14-d washout period in a cross-over manner. Changes in the growth of microbiota were assessed by fluorescence in situ hybridisation analysis, whereas SCFA levels were assessed using HPLC. Further, ammonia concentrations, faecal water genotoxicity and anti-proliferation ability were also assessed using different assays, which included cell work and the Comet assay. Accordingly, dietary intakes, anthropometric measurements and bowel movement assessment were also carried out. Although the consumption of dates did not induce significant changes in the growth of select bacterial groups or SCFA, there were significant increases in bowel movements and stool frequency (P<0·01; n 21) and significant reductions in stool ammonia concentration (P<0·05; n 21) after consumption of dates, relative to baseline. Furthermore, date fruit intake significantly reduced genotoxicity in human faecal water relative to control (P<0·01; n 21). Our data indicate that consumption of date fruit may reduce colon cancer risk without inducing changes in the microbiota.
Resumo:
With the increasing pressure on crop production from the evolution of herbicide resistance, farmers are increasingly adopting Integrated Weed Management (IWM) strategies to augment their weed control. These include measures to increase the competitiveness of the crop canopy such as increased sowing rate and the use of more competitive cultivars. While there are data on the relative impact of these non-chemical weed control methods assessed in isolation, there is uncertainty about their combined contribution, which may be hindering their adoption. In this article, the INTERCOM simulation model of crop / weed competition was used to examine the combined impact of crop density, sowing date and cultivar choice on the outcomes of competition between wheat (Triticum aestivum) and Alopecurus myosuroides. Alopecurus myosuroides is a problematic weed of cereal crops in North-Western Europe and the primary target for IWM in the UK because it has evolved resistance to a range of herbicides. The model was parameterised for two cultivars with contrasting competitive ability, and simulations run across 10 years at different crop densities and two sowing dates. The results suggest that sowing date, sowing density and cultivar choice largely work in a complementary fashion, allowing enhanced competitive ability against weeds when used in combination. However, the relative benefit of choosing a more competitive cultivar decreases at later sowing dates and higher crop densities. Modelling approaches could be further employed to examine the effectiveness of IWM, reducing the need for more expensive and cumbersome long-term in situ experimentation.