2 resultados para Déus -- TFC

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developments in high-throughput genotyping provide an opportunity to explore the application of marker technology in distinctness, uniformity and stability (DUS) testing of new varieties. We have used a large set of molecular markers to assess the feasibility of a UPOV Model 2 approach: “Calibration of threshold levels for molecular characteristics against the minimum distance in traditional characteristics”. We have examined 431 winter and spring barley varieties, with data from UK DUS trials comprising 28 characteristics, together with genotype data from 3072 SNP markers. Inter varietal distances were calculated and we found higher correlations between molecular and morphological distances than have been previously reported. When varieties were grouped by kinship, phenotypic and genotypic distances of these groups correlated well. We estimated the minimum marker numbers required and showed there was a ceiling after which the correlations do not improve. To investigate the possibility of breaking through this ceiling, we attempted genomic prediction of phenotypes from genotypes and higher correlations were achieved. We tested distinctness decisions made using either morphological or genotypic distances and found poor correspondence between each method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deployment of genetic markers is of interest in crop assessment and breeding programmes, due to the potential savings in cost and time afforded. As part of the internationally recognised framework for the awarding of Plant Breeders’ Rights (PBR), new barley variety submissions are evaluated using a suite of morphological traits to ensure they are distinct, uniform and stable (DUS) in comparison to all previous submissions. Increasing knowledge of the genetic control of many of these traits provides the opportunity to assess the potential of deploying diagnostic/perfect genetic markers in place of phenotypic assessment. Here, we identify a suite of 25 genetic markers assaying for 14 DUS traits, and implement them using a single genotyping platform (KASPar). Using a panel of 169 UK barley varieties, we show that phenotypic state at three of these traits can be perfectly predicted by genotype. Predictive values for an additional nine traits ranged from 81 to 99 %. Finally, by comparison of varietal discrimination based on phenotype and genotype resulted in correlation of 0.72, indicating that deployment of molecular markers for varietal discrimination could be feasible in the near future. Due to the flexibility of the genotyping platform used, the genetic markers described here can be used in any number or combination, in-house or by outsourcing, allowing flexible deployment by users. These markers are likely to find application where tracking of specific alleles is required in breeding programmes, or for potential use within national assessment programmes for the awarding of PBRs.