10 resultados para Cyclization
em CentAUR: Central Archive University of Reading - UK
Resumo:
beta-Lactones have, for the first time, been prepared by 4-exo-trig radical cyclization. Thus, alpha-ethenoyloxy radicals react in the presence of tributylstannane in a photothermal process to give beta-lactones. Highest yields were obtained when groups capable of stabilizing a carboncentered radical were present at the 3-position of the alkenoate acceptor.
Resumo:
A highly stereoselective synthesis of conformationally constrained cyclic γ-amino acids has been devised. The key step involves an intramolecular cyclization of a nitronate onto a conjugated ester, promoted by a bifunctional thiourea catalyst. This methodology has been successfully applied to generate a variety of γ-amino acids, including some containing three contiguous stereocenters, with very high diastereoselectivity and excellent enantioselectivity. It is postulated that an interaction that is key to the success of the process is the simultaneous coordination of the thiourea functionality to both the conjugated ester and the nitronate. Finally, the synthetic utility of these compounds is demonstrated in the synthesis of two dipeptides derived from the C- and N-termini.
Resumo:
Two novel benzodioxotetraaza macrocycles [2,9-dioxo-1,4,7,10-tetraazabicyclo[10.4.0]1,11-hexadeca-1(11),13,15-triene (H(2)L1) and 2,10-dioxo-1,4,8,11-tetraazabicyclo[11.4.0]1,12-heptadeca-1(12),14,16-triene (H(2)L2)] were synthesized by a [1 + 1] crablike cyclization. The protonation constants of both ligands were determined by H-1 NMR titration and by potentiometry at 25.0 degrees C in 0.10 M ionic strength in KNO3. The latter method was also used to ascertain the stability constants of their copper(II) complexes. These studies showed that the CuL1 complex has a much lower thermodynamic stability than the CuL2, and the H(2)L2 displays an excellent affinity for copper(II), due to the good fit of copper(II) into its cavity. The copper complexes of the novel ligands were characterized by electronic spectroscopy in solution and by crystal X-ray diffraction. These studies indicated that the copper center in the CuL1 complex adopts a square-pyramidal geometry with the four nitrogen atoms of the macrocycle forming the equatorial plane and a water molecule at axial position, and the copper in the CuL2 complex is square-planar. Several labeling conditions were tested, and only H(2)L2 could be labeled with Cu-67 efficiently (> 98%) in mild conditions (39 degrees C, 15 min) to provide a slightly hydrophilic radioligand (log D = -0.19 +/- 0.03 at pH 7.4). The in vitro stability was studied in the presence of different buffers or with an excess of diethylenetriamine-pentaethanoic acid. Very high stability was shown under these conditions for over 5 days. The incubation of the radiocopper complex in human serum showed 6% protein binding.
Resumo:
Highly strained macrocyclic ether-ketones obtained by nickel-catalyzed cyclization of linear precursor oligomers undergo ring-opening polyinerization via ether exchange in the presence of nucleophilic initiators such as fluoride or phenoxide anions. Strain enthapies of these macrocycles, from DSC analyses of their exothermic ring-opening polymerization are in the range 50-90 kJ mol(-1). Melt-phase polymerization generally affords slightly cross-linked materials, but solution-phase polymerization at high macrocycle concentrations gives fully soluble, high molar mass polymers with inherent viscosities of up to 1.78 dL g(-1). Sequence-analysis of the resulting polymers by C-13 NMR shows that alternating or random monomer sequences may be obtained, depending on whether one or both aromatic rings adjacent to the ether linkages are activated toward nucleophilic attack.
Resumo:
Fulgimides monosubstituted with [M(bpy)(3)](2+) (M = Ru, Os; bpy = 2,2'-bipyridine) chromophore units and with a single bpy group were synthesized and investigated as components of conceivable dinuclear photochromic switches of luminescence. The E-, Z- and closed-ring (C) photoisomer forms of the bpy-bound fulgimide were successfully separated by semi-preparative HPLC. The same procedure failed, however, in the case of the [M(bpy)(3)](2+)-substituted fulgimides. Energy transfer from the excited photochromic unit to the metal-bpy centre competes with the fulgimide cyclization, reducing the photocyclization quantum yields by approximately one order of magnitude compared to the non-complexed fulgimide-bpy ligand (phi(EC) = 0.17, phi(EZ) = 0.071, phi(ZE) = 0.15 at lambda(exc) = 334 nm). The cycloreversion of the fulgimide-bpy ligand is less efficient (phi(CE) = 0.047 at lambda(exc) = 520 nm). The intensity of the (MLCT)-M-3-based luminescence of the metal-bpy chromophore (in MeCN, phi(deaer) = 6.6 x 10(-2) and tau(deaer) = 1.09 mu s for Ru; phi(deaer) = 6.7 x 10(-3) and tau(deaer) = 62 ns for Os) is not affected by the fulgimide photoconversion. These results and supporting spectro-electrochemical data reveal that the lowest triplet excited states of the photochromic fulgimide moiety in all its E-, Z- and closed-ring forms lie above the lowest 3MLCT levels of the attached ruthenium and osmium chromophores. The actual components are therefore unlikely to form a triad acting as functional switch of energy transfer from [Ru(bpy)(3)](2+) to [Os(bpy)(3)](2+) through the photochromic fulgimide bridge.
Resumo:
A new strategy for the synthesis of sesquiterpenoids of the furanoeremophilane family was developed in which the tricyclic nucleus was assembled in an A + C -> A - C -> A - B - C sequence. The A - C connection was made via coupling of a cyclohexenylmethyl bromide with a stannylfuran under "ligandless" Stille conditions, and the key cyclization which closed ring B was accomplished with complete stereocontrol by intramolecular formylation of a 2-silylfuran in the presence of trimethylsilyl triflate. This route was used to complete the first total syntheses of the furanoeremophilane 6-hydroxyeuryopsin and the eremophilenolides toluccanolide A and toluccanolide C, as well as a formal synthesis of 1,10-epoxy-6-hydroxyeuryopsin.
Resumo:
The carbohydrate-derived substrate 3-C-allyl-1,2: 5,6-di-O-isopropylidene-alpha-D-allofuranose was judiciously manipulated for preparing suitable synthons, which could be converted to a variety of isoxazolidino-spirocycles and -tricycles through the application of ring-closing metathesis (RCM) and intramolecular nitrone cycloaddition (INC) reactions. Cleavage of the isoxazolidine rings of some of these derivatives by tranfer hydrogenolysis followed by coupling of the generated amino functionalities with 5-amino-4,6-dichloropyrimidine furnished the corresponding chloropyrimidine nucleosides, which were elaborated to spiroannulated carbanucleosides and conformationally locked bicyclo[2.2.1] heptane/ oxa-bicyclo[3.2.1]octane nucleosides. However, use of higher temperature for the cyclization of one of the chloropyrimidines led to the dimethylaminopurine analogue as a sole product, formed via nucleophilic displacement of the chloro group by dimethylamine generated from DMF.
Resumo:
Carbohydrate-derived substrates having (i) C-5 nitrone and C-3-O-allyl, (ii) C-4 vinyl and a C-3-O-tethered nitrone, and (iii) C-5 nitrone and C-4-allyloxymethyl generated tetracyclic isoxazolidinooxepane/-pyrart ring systems upon intramolecular nitrone cycloaddition reactions. Deprotection of the 1,2acetonides of these derivatives followed by introduction of uracil base via Vorbruggen reaction condition and cleavage of the isooxazolidine rings as well as of benzyl groups by transfer hydrogenolysis yielded an oxepane ring containing blicyclic and spirocyclic nucleosides. The corresponding oxepane based nucleoside analogues were prepared by cleavage of isoxazolidine and furanose rings, coupling of the generated amino functiontalities with 5-amino-4,6-dichloropyrimidine, cyclization to purine rings, and finally aminolysis.
Resumo:
Removal of silyl protection from D-glucose derived substrate 6 afforded 7, which upon acetonide deprotection followed by reaction with N-benzylhydroxylamine furnished two isomeric isoxazolidinocyclopentane derivatives via spontaneous cyclization of an in situ generated nitrone. The methyl xanthate derivative of the tertiary hydroxyl group of one isomer was isolated and subjected to radical deoxygenation reaction to form epimeric products, while with the other isomer it underwent spontaneous 1,2-elimination to form a mixture of the two possible endocyclic olefins. Hydrogenolytic cleavage of the isoxazolidine rings of the purified products followed by insertion of 5-amino-4-chloropyrimidine moiety and purine ring construction smoothly afforded structurally unique carbanucleoside analogues. Various spectroscopic methods on the synthesized compounds and X-ray analysis on one important intermediate were used to assign the structures and stereochemistry of the products.
Resumo:
Ring-forming reactions are an essential part of synthetic chemistry and allow access to a range of useful natural products and biologically important molecules. The applications of organocatalysis to the synthesis of functionalized, enantiopure structures really begins where organocatalysis itself begins; with the Hajos-Parrish reaction in the 1970s for the synthesis of steroids using proline. This chapter then will review the uses of organocatalysts in cyclization methodology – from the initial Hajos-Parrish discovery to current advances in the field.