2 resultados para Cutting process

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response surface methodology was used to study the effect of temperature, cutting time, and calcium chloride addition level on curd moisture content, whey fat losses, and curd yield. Coagulation and syneresis were continuously monitored using 2 optical sensors detecting light backscatter. The effect of the factors on the sensors’ response was also examined. Retention of fat during cheese making was found to be a function of cutting time and temperature, whereas curd yield was found to be a function of those 2 factors and the level of calcium chloride addition. The main effect of temperature on curd moisture was to increase the rate at which whey was expelled. Temperature and calcium chloride addition level were also found to affect the light backscatter profile during coagulation whereas the light backscatter profile during syneresis was a function of temperature and cutting time. The results of this study suggest that there is an optimum firmness at which the gel should be cut to achieve maximum retention of fat and an optimum curd moisture content to maximize product yield and quality. It was determined that to maximize curd yield and quality, it is necessary to maximize firmness while avoiding rapid coarsening of the gel network and microsyneresis. These results could contribute to the optimization of the cheese-making process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An NIR reflectance sensor, with a large field of view and a fibre-optic connection to a spectrometer for measuring light backscatter at 980 nm, was used to monitor the syneresis process online during cheese-making with the goal of predicting syneresis indices (curd moisture content, yield of whey and fat losses to whey) over a range of curd cutting programmes and stirring speeds. A series of trials were carried out in an 11 L cheese vat using recombined whole milk. A factorial experimental design consisting of three curd stirring speeds and three cutting programmes, was undertaken. Milk was coagulated under constant conditions and the casein gel was cut when the elastic modulus reached 35 Pa. Among the syneresis indices investigated, the most accurate and most parsimonious multivariate model developed was for predicting yield of whey involving three terms, namely light backscatter, milk fat content and cutting intensity (R2 = 0.83, SEy = 6.13 g/100 g), while the best simple model also predicted this syneresis index using the light backscatter alone (R2 = 0.80, SEy = 6.53 g/100 g). In this model the main predictor was the light backscatter response from the NIR light back scatter sensor. The sensor also predicted curd moisture with a similar accuracy.