4 resultados para Curvatures
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present a kinetic model for transformations between different self-assembled lipid structures. The model shows how data on the rates of phase transitions between mesophases of different geometries can be used to provide information on the mechanisms of the transformations and the transition states involved. This can be used, for example, to gain an insight into intermediate structures in cell membrane fission or fusion. In cases where the monolayer curvature changes on going from the initial to the final mesophase, we consider the phase transition to be driven primarily by the change in the relaxed curvature with pressure or temperature, which alters the relative curvature elastic energies of the two mesophase structures. Using this model, we have analyzed previously published kinetic data on the inter-conversion of inverse bicontinuous cubic phases in the 1-monoolein-30 wt% water system. The data are for a transition between QII(G) and QII(D) phases, and our analysis indicates that the transition state more closely resembles the QII(D) than the QII(G) phase. Using estimated values for the monolayer mean curvatures of the QII(G) and QII(D) phases of -0.123 nm(-1) and -0.133 nm(-1), respectively, gives values for the monolayer mean curvature of the transition state of between -0.131 nm(-1) and -0.132 nm(-1). Furthermore, we estimate that several thousand molecules undergo the phase transition cooperatively within one "cooperative unit", equivalent to 1-2 unit cells of QII(G) or 4-10 unit cells of QII(D).
Resumo:
This paper describes a new method for reconstructing 3D surface using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed object's surface is represented a set of triangular facets. We empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points optimally cluster closely on a highly curved part of the surface and are widely, spread on smooth or fat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not undersampled or underrepresented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object.
Resumo:
This paper describes a new method for reconstructing 3D surface points and a wireframe on the surface of a freeform object using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed surface points are frontier points and the wireframe is a network of contour generators. Both of them are reconstructed by pairing apparent contours in the 2D images. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The unique pattern of the reconstructed points and contours may be used in 31) object recognition and measurement without computationally intensive full surface reconstruction. The results are obtained from both computer-generated and real objects. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a method for reconstructing 3D frontier points, contour generators and surfaces of anatomical objects or smooth surfaces from a small number, e. g. 10, of conventional 2D X-ray images. The X-ray images are taken at different viewing directions with full prior knowledge of the X-ray source and sensor configurations. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the number of viewing directions is fixed and the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The technique may be used not only in medicine but also in industrial applications.