10 resultados para Current transformers (Instrument transformer)
em CentAUR: Central Archive University of Reading - UK
Resumo:
Academic and industrial literature concerning the energy consumption of commercial kitchens is scarce. Electricity consumption data were collected from distribution board current transformers in a sample of fourteen UK public house restaurants. This was set up to identify patterns of appliance use as well as to assess the total energy consumption of these establishments. The electricity consumption in the selected commercial kitchens was significantly higher than current literature estimates. On average, 63% of the premises electricity consumption was attributed to the catering activity. Key appliances that contributed to the samples average electricity consumption were identified as refrigeration (70 kwh, 41%), fryers (11 kwh, 13%), combi-ovens (35 kwh, 12%) bain maries (27 kwh, 9%) and grills (37kwh, 12%). Behavioral factors and poor maintenance were identified as major contributors to excessive electricity usage with potential savings of 70% and 45% respectively. Initiatives are required to influence operator behavior, such as the expansion of mandatory energy labeling, improved feedback information and the use of behavior change campaigns. Strict maintenance protocols and more appropriate sizing of refrigeration would be of great benefit to energy reduction.
Resumo:
Academic and industrial literature concerning the energy use of commercial kitchens is scarce. Electricity consumption data were collected from distribution board current transformers in a sample of fourteen UK public house-restaurants. This was set up to identify patterns of appliance use as well as to assess the total energy consumption of these establishments. The electricity consumption in the selected commercial kitchens was significantly higher than current literature estimates. On average, 63% of the premises’ electricity consumption was attributed to the catering activity. Key appliances that contributed to the samples average daily electricity consumption of the kitchen were identified as refrigeration (70 kWh, 41%), fryers (11 kWh, 13%), combination ovens (35 kWh, 12%), bain maries (27 kWh, 9%) and grills (37 kWh, 12%). Behavioural factors and poor maintenance were identified as major contributors to excessive electricity usage with potential savings of 70% and 45% respectively. Initiatives are required to influence operator behaviour, such as the expansion of mandatory energy labelling, improved feedback information and the use of behaviour change campaigns. Strict maintenance protocols and more appropriate sizing of refrigeration would be of great benefit to energy reduction.
Resumo:
The principles of operation of an experimental prototype instrument known as J-SCAN are described along with the derivation of formulae for the rapid calculation of normalized impedances; the structure of the instrument; relevant probe design parameters; digital quantization errors; and approaches for the optimization of single frequency operation. An eddy current probe is used As the inductance element of a passive tuned-circuit which is repeatedly excited with short impulses. Each impulse excites an oscillation which is subject to decay dependent upon the values of the tuned-circuit components: resistance, inductance and capacitance. Changing conditions under the probe that affect the resistance and inductance of this circuit will thus be detected through changes in the transient response. These changes in transient response, oscillation frequency and rate of decay, are digitized, and then normalized values for probe resistance and inductance changes are calculated immediately in a micro processor. This approach coupled with a minimum analogue processing and maximum of digital processing has advantages compared with the conventional approaches to eddy current instruments. In particular there are: the absence of an out of balance condition and the flexibility and stability of digital data processing.
Resumo:
A bipolar air conductivity instrument is described for use with a standard disposable meteorological radiosonde package. It is intended to provide electrical measurements at cloud boundaries, where the ratio of the bipolar air conductivities is affected by the presence of charged particles. The sensors are two identical Gerdien-type electrodes, which, through a voltage decay method, measure positive and negative air conductivities simultaneously. Voltage decay provides a thermally stable approach and a novel low current leakage electrometer switch is described which initiates the decay sequence. The radiosonde supplies power and telemetry, as well as measuring simultaneous meteorological data. A test flight using a tethered balloon determined positive (σ+) and negative (σ−) conductivities of σ+ = 2.77±0.2 fS m−1 and σ− = 2.82±0.2 fS m−1, respectively, at 400 m aloft, with σ+/σ− = 0.98±0.04.
Resumo:
Abstract Foggy air and clear air have appreciably different electrical conductivities. The conductivity gradient at horizontal droplet boundaries causes droplet charging, as a result of vertical current flow in the global atmospheric electrical circuit. The charging is poorly known, as both the current flow through atmospheric water droplet layers and the air conductivity are poorly characterised experimentally. Surface measurements during three days of continuous fog using new instrument techniques show that a shallow (of order 100 m deep) fog layer still permits the vertical conduction current to pass. Further, the conductivity in the fog is estimated to be approximately 20% lower than in clear air. Assuming a fog transition thickness of one metre, this implies a vertical conductivity gradient of order 10 fS m−2 at the boundary. The actual vertical conductivity gradient at a cloud boundary would probably be greater, due to the presence of larger droplets in clouds compared to fog, and cleaner, more conductive clear air aloft.
Resumo:
A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3 s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9 h was 1.76 +/- 0.002 pA m(-2). (c) 2006 American Institute of Physics.
Resumo:
This presentation describes a system for measuring claddings as an example of the many possible advantages to be obtained by applying a personal computer to eddy current testing. A theoretical model and a learning algorithm are integrated into an instrument. They are supported in the PC, and serve to simplify and enhance multiparameter testing. The PC gives additional assistance by simplifying set-up procedures and data logging etc.
Resumo:
Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 ◦C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA in both polarities for the range of atmospheric temperatures likely to be encountered in the southern UK. Comparison with atmospheric electric field measurements during disturbed weather confirms that bipolar electric fields induce corona currents of corresponding sign, with magnitudes ∼0.5 μA.
Resumo:
A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV) event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s−1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC) filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.