48 resultados para Crystallization speed
em CentAUR: Central Archive University of Reading - UK
Resumo:
Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.
Resumo:
New experiments underpin the interpretation of the basic division in crystallization behaviour of polyethylene in terms of whether or not there is time for the fold surface to order before the next molecular layer is added at the growth front. For typical growth rates, in Regime 11, polyethylene lamellae form with disordered {001} fold surfaces then transform, with lamellar thickening and twisting, towards the more-ordered condition found for slower crystallization in Regime 1, in which lamellae form with and retain {201} fold surfaces. Several linear and linear-low-density polyethylenes have been used to show that, for the same polymer crystallized alone or in a blend, the growth rate at which the change in initial lamellar condition occurs is reasonably constant thereby supporting the concept of a specific time for surfaces to attain the ordered {201}) state. This specific time, in the range from milliseconds to seconds, increases with molecular length, and in linear-low-density polymer, for higher branch contents. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in near‐Earth space, arising from both quasi‐steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the Wang‐Sheeley‐Arge (WSA) empirical model. The mean‐square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate “figure of merit” for assessing solar wind speed predictions. A complementary, event‐based analysis technique is developed in which high‐speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.
Resumo:
Prediction of the solar wind conditions in near-Earth space, arising from both quasi-steady and transient structures, is essential for space weather forecasting. To achieve forecast lead times of a day or more, such predictions must be made on the basis of remote solar observations. A number of empirical prediction schemes have been proposed to forecast the transit time and speed of coronal mass ejections (CMEs) at 1 AU. However, the current lack of magnetic field measurements in the corona severely limits our ability to forecast the 1 AU magnetic field strengths resulting from interplanetary CMEs (ICMEs). In this study we investigate the relation between the characteristic magnetic field strengths and speeds of both magnetic cloud and noncloud ICMEs at 1 AU. Correlation between field and speed is found to be significant only in the sheath region ahead of magnetic clouds, not within the clouds themselves. The lack of such a relation in the sheaths ahead of noncloud ICMEs is consistent with such ICMEs being skimming encounters of magnetic clouds, though other explanations are also put forward. Linear fits to the radial speed profiles of ejecta reveal that faster-traveling ICMEs are also expanding more at 1 AU. We combine these empirical relations to form a prediction scheme for the magnetic field strength in the sheaths ahead of magnetic clouds and also suggest a method for predicting the radial speed profile through an ICME on the basis of upstream measurements.
Resumo:
The confined crystallization of poly(ethylene oxide) (PEO) in predominantly spherical microdomains formed by several diblock copolymers was studied and compared. Two polybutadiene-b-poly(ethylene oxide) diblock copolymers were prepared by sequential anionic polymerization (with approximately 90 and 80 wt % polybutadiene (PB)). These were compared to equivalent samples after catalytic hydrogenation that produced double crystalline polyethylene-b-poly(ethylene oxide) diblock copolymers. Both systems are segregated into microdomains as indicated by small-angle X-ray scattering (SAXS) experiments performed in the melt and at lower temperatures. However, the PB-b-PEO systems exhibited a higher degree of order in the melt. A predominantly spherical morphology of PEO in a PB or a PE matrix was observed by both SAXS and transmission electron microscopy, although a possibly mixed morphology (spheres and cylinders) was formed when the PEO composition was close to the cylinder-sphere domain transitional composition as indicated by SAXS. Differential scanning calorimetry experiments showed that a fractionated crystallization process for the PEO occurred in all samples, indicating that the PE cannot nucleate PEO in these diblock copolymers. A novel result was the observation of a subsequent fractionated melting that reflected the crystallization process. Sequential isothermal crystallization experiments allowed us to thermally separate at least three different crystallization and melting peaks for the PEO microdomains. The lowest melting point fraction was the most important in terms of quantity and corresponded to the crystallization of isolated PEO spheres (or cylinders) that were either superficially or homogeneously nucleated. This was confirmed by Avrami index values of approximately 1. The isothermal crystallization results indicate that the PE matrix restricts the crystallization of the covalently bonded PEO to a higher degree compared to PB.
Resumo:
The crystallization of well-defined poly(L-lactide)-b-poly(epsilon-caprolactone) diblock copolymers, PLLA-b-PCL, was investigated by time-resolved X-ray techniques, polarized optical microscopy (POM), and differential scanning calorimetry (DSC). Two compositions were studied that contained 44 and 60 wt % poly(L-lactide), PLLA (they are referred to as (L44C5614)-C-11 and (L60C409)-C-12, respectively, with the molecular weight of each block in kg/mol as superscript). The copolymers were found to be initially miscible in the melt according to small-angle X-ray scattering measurements (SAXS). Their thermal behavior was also indicative of samples whose crystallization proceeds from a mixed melt. Sequential isothermal crystallization from the melt at 100 degreesC (for 30 min) and then at 30 degreesC (for 15 min) was measured. At 100 degreesC only the PLLA block is capable of crystallization, and its crystallization kinetics was followed by both WAXS and DSC; comparable results were obtained that indicated an instantaneous nucleation with three-dimensional superstructures (Avrami index of approximately 3). The spherulitic nature of the superstructure was confirmed by POM. When the temperature was decreased to 30 degreesC, the PCL block was able to crystallize within the PLLA negative spherulites (with an Avrami index of 2, as opposed to 3 in homo-PCL), and its crystallization rate was much slower than an equivalent homo-PCL. Time-resolved SAXS experiments in (L60C409)-C-12 revealed an initial melt mixed morphology at 165 degreesC that upon cooling transformed into a transient microphase-separated lamellar structure prior to crystallization at 100 degreesC.
Resumo:
The effect of poly(ethylene glycol) PEG crystallization on P-sheet fibril formation is studied for a series of three peptide/PEG conjugates containing fragments modified from the amyloid P peptide, specifically KLVFF, FFKLVFF, and AAKLVFF. These are conjugated to PEG with M-n = 3300 g mol(-1). It is found, via small-angle X-ray scattering,X-ray diffraction, atomic force microscopy, and polarized optical microscopy, that PEG crystallinity in dried samples can disturb fibrillization, in particular cross-P amyloid structure formation, for the conjugate containing the weak fibrillizer KLVFF, whereas this is retained for the conjugates containing the stronger fibrillizers AAKLVFF and FFKLVFF. For these two samples, the alignment of peptide fibrils also drives the orientation of the attached PEG chains. Our results highlight the importance of the antagonistic effects of PEG crystallization and peptide fibril formation in PEG/peptide conjugates.