10 resultados para Cosmetic dye
em CentAUR: Central Archive University of Reading - UK
Resumo:
A structurally simple low molecular weight hydrogelator derived from isophthalic acid forms robust pH-responsive hydrogels capable of highly efficient and selective dye adsorption.
Resumo:
Many environmental compounds with oestrogenic activity are measurable in the human breast and oestrogen is a known factor in breast cancer development. Exposure to environmental oestrogens occurs through diet, household products and cosmetics, but concentrations of single compounds in breast tissue are generally lower than needed for assayable oestrogenic responses. Results presented here and elsewhere demonstrate that in combination, chemicals can give oestrogenic responses at lower concentrations, which suggests that in the breast, low doses of many compounds could sum to give a significant oestrogenic stimulus. Updated incidence figures show a continued disproportionate incidence of breast cancer in Britain in the upper outer quadrant of the breast which is also the region to which multiple cosmetic chemicals are applied. CONCLUSION: If exposure to complex mixtures of oestrogenic chemicals in consumer products is a factor in breast cancer development, then a strategy for breast cancer prevention could become possible.
Resumo:
Photoinduced poling (PIP) is a new technique which allows the room‐temperature preparation of guest/host polymer films exhibiting significant polar order for nonlinear optical applications. We report a comparison of this novel technique with the conventional electrode poling procedure performed at the glass transition temperature of the polymer using disperse red 1/poly(methylmethacrylate) films. In particular, in situ second harmonic generation measurements show that levels of polar order achieved using these two techniques are similar. In contrast, the stability of the polar order is reduced by up to 20 times in terms of the decay time constant in films prepared using PIP although the stability is very dependent upon the temperature at which the poling was performed.
Resumo:
Experimental results of the temperature dependence of the nonlinear optical response of methyl red doped polymethylmethacrylate films in the range 20°C to 170°C are reported. It is found that the intensity of the phase conjugate signal resulting from degenerate four-wave mixing using pump and probe beams with parallel polarisation states increases dramatically on heating by a factor of ∼ 10, reaching a maximum at ∼ 100°C. The intensity of the phase conjugate signal for the case with crossed polarisation states of the pump and probe beams drops monotonically with increasing temperature. For both configurations the response time shortens with increasing temperature. The particular role of the polymer matrix in this temperature variation of the nonlinear optical response is discussed.
Resumo:
Near-perfect vector phase conjugation was achieved at 488 nm in a methyl red dye impregnated polymethylmethacrylate film by employing a temperature tuning technique. Using a degenerate four-wave mixing geometry with vertically polarized counterpropagating pump beams, intensity and polarization gratings were written in the dye/polymer system using a vertically or horizontally polarized weak probe beam. Over a limited temperature range, as the sample was heated, the probe reflectivity from the polarization grating dropped but the reflectivity from the intensity grating rose sharply. At a sample temperature of approximately 50°C, the reflectivities of the gratings were measured to be equal and we confirmed that, at this temperature, the measured vector phase conjugate fidelity was very close to unity. We discuss a possible explanation of this effect.
Resumo:
The development of novel molecules for the creation of nanometer structures with specific properties has been the current interest of this research. We have developed a set of molecules from hydrophobic omega- and alpha-amino acids by protecting the -NH(2) with Boc (t-butyloxycarbonyl) group and -CO(2)H with para-nitroanilide such as BocHN-Xx-CONH-(p-NO(2))center dot C(6)H(4), where Xx is gamma-aminobutyric acid (gamma-Abu), (L)-isoleucine, alpha-aminoisobutyric acid, proline, etc. These molecules generate various nanometer structures, such as nanofibrils, nanotubes and nanovesicles, in methanol/water through the self-assembly of bilayers in which the nitro benzene moieties are stacked in the middle and the Boc-protected amino acids parts are packed in the outer surface. The bilayers can be further stacked one over the other through hydrophobic interactions to form multilayer structure, which helps to generate different kinds of nanoscopic structures. The formation of the nanostructures has been facilitated through the participation of various noncovalent interactions, such as hydrophobic interactions, hydrogen bonding and aromatic p-stacking interactions. Fluorescence microscopy and UV studies reveal that the nanovesicles generated from pro-based molecule can encapsulate dye molecules which can be released by addition of acid (at pH 2). These single amino acid based molecules are both easy to synthesize and cost-effective and therefore offer novel scaffolds for the future design of nanoscale structures.
Resumo:
The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitised solar cells (DSSC). Structural analysis reveals small domains of ordered (2 x 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two five-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.