9 resultados para Correction factor
em CentAUR: Central Archive University of Reading - UK
Resumo:
Testing of the Integrated Nitrogen model for Catchments (INCA) in a wide range of ecosystem types across Europe has shown that the model underestimates N transformation processes to a large extent in northern catchments of Finland and Norway in winter and spring. It is found, and generally assumed, that microbial activity in soils proceeds at low rates at northern latitudes during winter, even at sub-zero temperatures. The INCA model was modified to improve the simulation of N transformation rates in northern catchments, characterised by cold climates and extensive snow accumulation and insulation in winter, by introducing an empirical function to simulate soil temperatures below the seasonal snow pack, and a degree-day model to calculate the depth of the snow pack. The proposed snow-correction factor improved the simulation of soil temperatures at Finnish and Norwegian field sites in winter, although soil temperature was still underestimated during periods with a thin snow cover. Finally, a comparison between the modified INCA version (v. 1.7) and the former version (v. 1.6) was made at the Simojoki river basin in northern Finland and at Dalelva Brook in northern Norway. The new modules did not imply any significant changes in simulated NO3- concentration levels in the streams but improved the timing of simulated higher concentrations. The inclusion of a modified temperature response function and an empirical snow-correction factor improved the flexibility and applicability of the model for climate effect studies.
Resumo:
The many-body effect in the kinetic responses of ER fluids is studied by a molecular-dynamic simulation method. The mutual polarization effects of the particles are considered by self-consistently calculating the dipole strength on each particle according to the external field and the dipole field due to all the other particles in the fluids. The many-body effect is found to increase with the enhancement of the particle concentration and the permittivity ratio between the solvent and the particles. The calculated response times are shorter than that predicted with the 'point-dipole' model and agree very well with experimental results. The many-body effect enhances the shear stresses of the fluids by several times. But they are not proportional to the many-body correction factor lambda as expected. This is due to the fact that larger interaction forces between the particles lead to coarsening of the fibers formed in the suspensions. The results show that the many-body and multipolar interaction between the particles must be treated comprehensively in the simulations in order to get more reliable results.
Resumo:
More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies [foF2] had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of foF2 to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17-21. This test is carried out for the original composite of the Wolf/Zürich/International sunspot number [R], the new “backbone” group sunspot number [RBB] and the proposed “corrected sunspot number” [RC]. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - foF2 relationship. Over the interval studied here, R, RBB, and RC largely differ in their allowance for the “Waldmeier discontinuity” around 1945 (the correction factor for which for R, RBB and RC is, respectively, zero, effectively over 20 %, and explicitly 11.6 %). It is shown that for Solar Cycles 18-21, all three sunspot data sequences perform well, but that the fit residuals are lowest and most uniform for RBB. We here use foF2 for those UTs for which R, RBB, and RC all give correlations exceeding 0.99 for intervals both before and after the Waldmeier discontinuity. The error introduced by the Waldmeier discontinuity causes R to underestimate the fitted values based on the foF2 data for 1932-1945 but RBB overestimates them by almost the same factor, implying that the correction for the Waldmeier discontinuity inherent in RBB is too large by a factor of two. Fit residuals are smallest and most uniform for RC and the ionospheric data support the optimum discontinuity multiplicative correction factor derived from the independent Royal Greenwich Observatory (RGO) sunspot group data for the same interval.
Resumo:
Historic analysis of the inflation hedging properties of stocks produced anomalous results, with equities often appearing to offer a perverse hedge against inflation. This has been attributed to the impact of real and monetary shocks to the economy, which influence both inflation and asset returns. It has been argued that real estate should provide a better hedge: however, empirical results have been mixed. This paper explores the relationship between commercial real estate returns (from both private and public markets) and economic, fiscal and monetary factors and inflation for US and UK markets. Comparative analysis of general equity and small capitalisation stock returns in both markets is carried out. Inflation is subdivided into expected and unexpected components using different estimation techniques. The analyses are undertaken using long-run error correction techniques. In the long-run, once real and monetary variables are included, asset returns are positively linked to anticipated inflation but not to inflation shocks. Adjustment processes are, however, gradual and not within period. Real estate returns, particularly direct market returns, exhibit characteristics that differ from equities.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
This paper considers supply dynamics in the context of the Irish residential market. The analysis, in a multiple error-correction framework, reveals that although developers did respond to disequilibrium in supply, the rate of adjustment was relatively slow. In contrast, however, disequilibrium in demand did not impact upon supply, suggesting that inelastic supply conditions could explain the prolonged nature of the boom in the Irish market. Increased elasticity in the later stages of the boom may have been a contributory factor in the extent of the house price falls observed in recent years.
Resumo:
The equations of Milsom are evaluated, giving the ground range and group delay of radio waves propagated via the horizontally stratified model ionosphere proposed by Bradley and Dudeney. Expressions for the ground range which allow for the effects of the underlying E- and F1-regions are used to evaluate the basic maximum usable frequency or M-factors for single F-layer hops. An algorithm for the rapid calculation of the M-factor at a given range is developed, and shown to be accurate to within 5%. The results reveal that the M(3000)F2-factor scaled from vertical-incidence ionograms using the standard URSI procedure can be up to 7.5% in error. A simple addition to the algorithm effects a correction to ionogram values to make these accurate to 0.5%.
Resumo:
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.