10 resultados para Core Formation

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of a lava dome involves fractionation of the lava into core and clastic components. We show that for three separate, successive andesitic lava domes that grew at Soufrière Hills volcano, Montserrat, between 1999 and 2007, the volumetric proportion of the lava converted to talus or pyroclastic flow deposits was 50%–90% of the lava extruded. Currently, only 8% of the total magma extruded during the 1995–2007 eruption remains as core lava. The equivalent representation in the geological record will probably be even lower. Most of the lava extruded at the surface flowed no further than 150–300 m from the vent before disaggregation, resulting in a lava core whose shape tends to a cylinder. Moderate to high extrusion rates at the Soufrière Hills domes may have contributed to the large clastic fraction observed. Creating talus dissipates much of the energy that would otherwise be stored in the core lava of domes. The extreme hazards from large pyroclastic flows and blasts posed by wholesale collapse of a lava dome depend largely on the size of the lava core, and hence on the aggregate history of the partitioning process, not on the size of the dome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms underlying the formation of necrotic regions within avascular tumours are not well understood. In this paper, we examine the relative roles of nutrient deprivation and of cell death, from both the proliferating phase of the cell cycle via apoptosis and from the quiescent phase via necrosis, in changing the structure within multicellular tumour spheroids and particularly the accumulation of dead cell material in the centre. A mathematical model is presented and studied that accounts for nutrient diffusion, changes in cell cycling rates, the two different routes to cell death as well as active motion of cells and passive motion of the dead cell material. In studying the accumulation of dead cell matter we do not distinguish between the route by which each was formed. The resulting mathematical model is examined for a number of scenarios. Results show that in many cases the size of the necrotic core is closely correlated with low levels in nutrient concentration. However, in certain cases, particularly where the rate of necrosis is large, the resulting necrotic core can lead to regions of non-negligible nutrient concentration-dependent upon the mode of cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[(VO)-O-IV(acac)(2)] reacts with an equimolar amount of benzoyl hydrazones of 2-hydroxyacetophenone (H2L1), 2-hydroxy-5-methylacetophenone (H2L2) and 5-chloro-2-hydroxyacetophenone (H2L4) in methanol to afford the penta-coordinated mixed-ligand methoxy bonded oxidovanadium(V) complexes [(VO)-O-V(L-1)-(OCHA(3))](1). [(VO)-O-V(L-2)(OCH3)](2), and [(VO)-O-V(L-4)(OCH3)](4), respectively, whereas, the similar reaction with the benzoyl hydrazone of 2-hydroxy-5-methoxyacetophenone (H2L3) producing only the hexa-coordinated dimethoxy-bridged dimeric complex [(VO)-O-V(L-3)(OCH3)](2) (3A). Similar type of hexa-coordinated dimeric analogue of 1 i.e., [(VO)-O-V(L-1)(OCH3)](2) (1A) was obtained from the reaction of [(VO)-O-IV(acac)(2)] with the equimolar amount of H2L1 in presence of half equivalent 4,4'-bipyridine in methanol while the decomposition of [(VO)-O-IV(L-2)(bipy)] complex in methanol afforded the dimeric analogue of 2 i.e., [(VO)-O-V(L-2)(OCH3)](2) (2A). All these dimeric complexes 1A-3A react with an excess amount of imidazole in methanol producing the respective monomeric complex. The X-ray structural analysis of 1-3 and their dimeric analogues 1A-3A indicates that the geometry around the vanadium center in the monomeric form is distorted square-pyramidal while that of their respective dimeric forms is distorted octahedral, where the ligands are bonded to vanadium meridionally in their fully deprotonated enol forms. Due to the formation of bridge, the V-O(methoxy) bond in the dimeric complexes is lengthened to such an extent that it becomes equal in length with the V-O(phenolate) bond in 3A and even longer in 1A and 2A, which is unprecedented. The H-1 NMR spectra of the complexes 1A-3A in CDCl3 solution, indicates that these dimeric complexes are converted appreciably into their respective monomeric form. Complexes are electro-active displaying one quasi-reversible reduction peak near +0.25 V versus SCE in CH2Cl2 solution. The E-1/2 values of the complexes show linear relationship with the Hammett parameter (sigma) of the substituents. All these VO3+-complexes are converted to the corresponding complexes with V2O34+ motif simply on refluxing them in acetone and to the complexes with VO2+ motif on reaction with 2 KOH in methanol. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siramesine (SRM) is a sigma-2 receptor agonist which has been recently shown to inhibit growth of cancer cells. Fluorescence spectroscopy experiments revealed two distinct binding sites for this drug in phospholipid membranes. More specifically, acidic phospholipids retain siramesine on the bilayer surface due to a high-affinity interaction, reaching saturation at an apparent 1:1 drug-acidic phospholipid stoichiometry, where after the drug penetrates into the hydrocarbon core of the membrane. This behavior was confirmed using Langmuir films. Of the anionic phospholipids, the highest affinity, comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction Of X-PA = 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 +/- 80 x 10(6). An MD simulation on the siramesine:PA interaction was in agreement with the above data. Taking into account the key role of PA as a signaling molecule promoting cell growth our results suggest a new paradigm for the development of anticancer drugs, viz. design of small molecules specifically scavenging phospholipids involved in the signaling cascades controlling cell behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since its introduction in 1993, the Message Passing Interface (MPI) has become a de facto standard for writing High Performance Computing (HPC) applications on clusters and Massively Parallel Processors (MPPs). The recent emergence of multi-core processor systems presents a new challenge for established parallel programming paradigms, including those based on MPI. This paper presents a new Java messaging system called MPJ Express. Using this system, we exploit multiple levels of parallelism - messaging and threading - to improve application performance on multi-core processors. We refer to our approach as nested parallelism. This MPI-like Java library can support nested parallelism by using Java or Java OpenMP (JOMP) threads within an MPJ Express process. Practicality of this approach is assessed by porting to Java a massively parallel structure formation code from Cosmology called Gadget-2. We introduce nested parallelism in the Java version of the simulation code and report good speed-ups. To the best of our knowledge it is the first time this kind of hybrid parallelism is demonstrated in a high performance Java application. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of PEGylated peptides containing a modified sequence from the amyloid beta peptide, YYKLVFF, has been studied in aqueous solution. Two PEG molar masses, PEG1k and PEG3k, were used in the conjugates. It is shown that both YYKLVFF–PEG hybrids form fibrils comprising a peptide core and a PEG corona. The fibrils are much longer for YYKLVFF–PEG1k, pointing to an influence of PEG chain length. The beta-sheet secondary structure of the peptide is retained in the conjugate. Lyotropic liquid crystal phases, specifically nematic and hexagonal columnar phases, are formed at sufficiently high concentration. Flow alignment of these mesophases was investigated by small-angle neutron scattering with in situ steady shearing in a Couette cell. On drying, PEG crystallization occurs leading to characteristic peaks in the X-ray diffraction pattern, and to lamellar structures imaged by atomic force microscopy. The X-ray diffraction pattern retains features of the cross-beta pattern from the beta-sheet structure, showing that this is not disrupted by PEG crystallization.