45 resultados para Coral Sea, Battle of the, 1942.
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Namib Sand Sea in southern Africa offers an ideal location in which to consider general questions about the evolution of sand seas, about the fluxes of sand through contemporary dune fields and about the patterns of dune form that are created. This paper aims to provide a concise account of the approaches and techniques that are currently being used and will be used in the future to address these questions. The paper considers the techniques employed to investigate wind climate, the morphometry of the dunes, the internal structure of dune sediments, the age of the dunes and the potential to model dune development
Resumo:
The play Epic Sea Battle at Night was originally staged in 1967, to commemorate two of China’s People’s Liberation Army’s military triumphs over the Taiwanese navy two years previously. Produced at the height of the Chinese Cultural Revolution, the play is an example of the exploitation of the arts as an ideological instrument, celebrating military heroism and political conviction. Stills from the play were included in, China Pictorial 11, an English language propaganda pamphlet that was distributed to Western Imperialists in order to educate them in Maoist policy. Today, these images are clear representations of ideology. More than forty years after the Cultural Revolution, the ideology under which we live, neo-liberal late-capitalism, deliberately shirks from such blatant displays of propaganda. We have supposedly the freedom to believe whatever we like in a post-ideological age, and yet core beliefs about meritocracy, individualism and competitiveness frequently go unchallenged. By juxtaposing the visual language of ideology with the text of the capitalist manifesto, the re-enactment of a scene from Epic Sea Battle at Night harnesses the aesthetics of the past so as to allow us to reconsider the alleged neutrality of the present. The design of the stage, the positioning of the actors, costumes and props of the current production closely resembled those documented in China Pictorial 11, yet the actors’ monologues belong to a completely different context. No less heroic and utopian in tone than the speech given by the political instructor of gunboat 874 in the original play, the capitalist manifesto was an attempt to give a concrete language to the shapeless ideology of the present, and to force the invisible currents that govern life today, in China as in the West, to the surface. Neither a lecture on neo-liberal economics, nor a theatrical performance of a narrative, the piece appropriated the format of the propaganda play to re-evaluate the relationship between art and politics now.
Resumo:
Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.
Resumo:
[ 1] A rapid increase in the variety, quality, and quantity of observations in polar regions is leading to a significant improvement in the understanding of sea ice dynamic and thermodynamic processes and their representation in global climate models. We assess the simulation of sea ice in the new Hadley Centre Global Environmental Model (HadGEM1) against the latest available observations. The HadGEM1 sea ice component uses elastic-viscous-plastic dynamics, multiple ice thickness categories, and zero-layer thermodynamics. The model evaluation is focused on the mean state of the key variables of ice concentration, thickness, velocity, and albedo. The model shows good agreement with observational data sets. The variability of the ice forced by the North Atlantic Oscillation is also found to agree with observations.
Resumo:
A numerical mesoscale model is used to make a high-resolution simulation of the marine boundary layer in the Persian Gulf, during conditions of offshore flow from Saudi Arabia. A marine internal boundary layer (MIBL) and a sea-breeze circulation (SBC) are found to co-exist. The sea breeze develops in the mid-afternoon, at which time its front is displaced several tens of kilometres offshore. Between the coast and the sea-breeze system, the MIBL that occurs is consistent with a picture described in the existing literature. However, the MIBL is perturbed by the SBC, the boundary layer deepening significantly seaward of the sea-breeze front. Our analysis suggests that this strong, localized deepening is not a direct consequence of frontal uplift, but rather that the immediate cause is the retardation of the prevailing, low-level offshore wind by the SBC. The simulated boundary-layer development can be accounted for by using a simple 1D Lagrangian model of growth driven by the surface heat flux. This model is obtained as a straightforward modification of an established MIBL analytic growth model.
Resumo:
In addition to projected increases in global mean sea level over the 21st century, model simulations suggest there will also be changes in the regional distribution of sea level relative to the global mean. There is a considerable spread in the projected patterns of these changes by current models, as shown by the recent Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (AR4). This spread has not reduced from that given by the Third Assessment models. Comparison with projections by ensembles of models based on a single structure supports an earlier suggestion that models of similar formulation give more similar patterns of sea level change. Analysing an AR4 ensemble of model projections under a business-as-usual scenario shows that steric changes (associated with subsurface ocean density changes) largely dominate the sea level pattern changes. The relative importance of subsurface temperature or salinity changes in contributing to this differs from region to region and, to an extent, from model-to-model. In general, thermosteric changes give the spatial variations in the Southern Ocean, halosteric changes dominate in the Arctic and strong compensation between thermosteric and halosteric changes characterises the Atlantic. The magnitude of sea level and component changes in the Atlantic appear to be linked to the amount of Atlantic meridional overturning circulation (MOC) weakening. When the MOC weakening is substantial, the Atlantic thermosteric patterns of change arise from a dominant role of ocean advective heat flux changes.
Resumo:
The new HadKPP atmosphere–ocean coupled model is described and then used to determine the effects of sub-daily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intra-seasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K Profile Parameterization ocean-boundary-layer model. Four 30-member ensembles were performed that varied in oceanic vertical resolution between 1 m and 10 m and in coupling frequency between 3 h and 24 h. The 10 m, 24 h ensemble exhibited roughly 60% of the observed 30–50 day variability in sea-surface temperatures and rainfall and very weak northward propagation. Enhancing either only the vertical resolution or only the coupling frequency produced modest improvements in variability and only a standing intra-seasonal oscillation. Only the 1 m, 3 h configuration generated organized, northward-propagating convection similar to observations. Sub-daily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intra-seasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical sub-seasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intra-seasonal oscillation resembling observations.