12 resultados para Continuous monitoring

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cheese industry has continually sought a robust method to monitor milk coagulation. Measurement of whey separation is also critical to control cheese moisture content, which affects quality. The objective of this study was to demonstrate that an online optical sensor detecting light backscatter in a vat could be applied to monitor both coagulation and syneresis during cheesemaking. A prototype sensor having a large field of view (LFV) relative to curd particle size was constructed. Temperature, cutting time, and calcium chloride addition were varied to evaluate the response of the sensor over a wide range of coagulation and syneresis rates. The LFV sensor response was related to casein micelle aggregation and curd firming during coagulation and to changes in curd moisture and whey fat contents during syneresis. The LFV sensor has potential as an online, continuous sensor technology for monitoring both coagulation and syneresis during cheesemaking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research in the last four decades has brought a considerable advance in our understanding of how the brain synthesizes information arising from different sensory modalities. Indeed, many cortical and subcortical areas, beyond those traditionally considered to be ‘associative,’ have been shown to be involved in multisensory interaction and integration (Ghazanfar and Schroeder 2006). Visuo-tactile interaction is of particular interest, because of the prominent role played by vision in guiding our actions and anticipating their tactile consequences in everyday life. In this chapter, we focus on the functional role that visuo-tactile processing may play in driving two types of body-object interactions: avoidance and approach. We will first review some basic features of visuo-tactile interactions, as revealed by electrophysiological studies in monkeys. These will prove to be relevant for interpreting the subsequent evidence arising from human studies. A crucial point that will be stressed is that these visuo-tactile mechanisms have not only sensory, but also motor-related activity that qualifies them as multisensory-motor interfaces. Evidence will then be presented for the existence of functionally homologous processing in the human brain, both from neuropsychological research in brain-damaged patients and in healthy participants. The final part of the chapter will focus on some recent studies in humans showing that the human motor system is provided with a multisensory interface that allows for continuous monitoring of the space near the body (i.e., peripersonal space). We further demonstrate that multisensory processing can be modulated on-line as a consequence of interacting with objects. This indicates that, far from being passive, the monitoring of peripersonal space is an active process subserving actions between our body and objects located in the space around us.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed multimedia supports a symbiotic infotainment duality, i.e. the ability to transfer information to the user, yet also provide the user with a level of satisfaction. As multimedia is ultimately produced for the education and / or enjoyment of viewers, the user’s-perspective concerning the presentation quality is surely of equal importance as objective Quality of Service (QoS) technical parameters, to defining distributed multimedia quality. In order to extensively measure the user-perspective of multimedia video quality, we introduce an extended model of distributed multimedia quality that segregates quality into three discrete levels: the network-level, the media-level and content-level, using two distinct quality perspectives: the user-perspective and the technical-perspective. Since experimental questionnaires do not provide continuous monitoring of user attention, eye tracking was used in our study in order to provide a better understanding of the role that the human element plays in the reception, analysis and synthesis of multimedia data. Results showed that video content adaptation, results in disparity in user video eye-paths when: i) no single / obvious point of focus exists; or ii) when the point of attention changes dramatically. Accordingly, appropriate technical- and user-perspective parameter adaptation is implemented, for all quality abstractions of our model, i.e. network-level (via simulated delay and jitter), media-level (via a technical- and user-perspective manipulated region-of-interest attentive display) and content-level (via display-type and video clip-type). Our work has shown that user perception of distributed multimedia quality cannot be achieved by means of purely technical-perspective QoS parameter adaptation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Safety is an element of extreme priority in mining operations, currently many traditional mining countries are investing in the implementation of wireless sensors capable of detecting risk factors; through early warning signs to prevent accidents and significant economic losses. The objective of this research is to contribute to the implementation of sensors for continuous monitoring inside underground mines providing technical parameters for the design of sensor networks applied in underground coal mines. The application of sensors capable of measuring in real time variables of interest, promises to be of great impact on safety for mining industry. The relationship between the geological conditions and mining method design, establish how to implement a system of continuous monitoring. In this paper, the main causes of accidents for underground coal mines are established based on existing worldwide reports. Variables (temperature, gas, structural faults, fires) that can be related to the most frequent causes of disaster and its relevant measuring range are then presented, also the advantages, management and mining operations are discussed, including the analyzed of applying these systems in terms of Benefit, Opportunity, Cost and Risk. The publication focuses on coal mining, based on the proportion of these events a year worldwide, where a significant number of workers are seriously injured or killed. Finally, a dynamic assessment of safety at underground mines it is proposed, this approach offers a contribution to design personalized monitoring networks, the experience developed in coal mines provides a tool that facilitates the application development of technology within underground coal mines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate a novel light backscatter sensor, with a large field of view relative to curd size, for continuous on-line monitoring of coagulation and syneresis to improve curd moisture content control. A three-level, central composite design was employed to study the effects of temperature, cutting time, and CaCl2 addition on cheese making parameters. The sensor signal was recorded and analyzed. The light backscatter ratio followed a sigmoid increase during coagulation and decreased asymptotically after gel cutting. Curd yield and curd moisture content were predicted from the time to the maximum slope of the first derivative of the light backscatter ratio during coagulation and the decrease in the sensor response during syneresis. Whey fat was affected by coagulation kinetics and cutting time, suggesting curd rheological properties at cutting are dominant factors determining fat losses. The proposed technology shows potential for on-line monitoring of coagulation and syneresis. 2007 Elsevier Ltd. All rights reserved..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames – one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A world of ubiquitous computing, full of networked mobile and embedded technologies, is approaching. The benefits of this technology are numerous, and act as the major driving force behind its development. These benefits are brought about, in part, by ubiquitous monitoring (UM): the continuous and wide spread collection of ?significant amounts of data about users

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze patterns in marine productivity, harmful algal blooms, thermal stress in coral reefs, and oceanographic processes, optical and biophysical marine parameters, such as sea surface temperature, and ocean color products, such as chlorophyll-a concentration, diffuse attenuation coefficient, total suspended matter concentration, chlorophyll fluorescence line height, and remote sensing reflectance, are required. In this paper we present a novel automatic Satellite-based Ocean Monitoring System (SATMO) developed to provide, in near real-time, continuous spatial data sets of the above-mentioned variables for marine-coastal ecosystems in the Gulf of Mexico, northeastern Pacific Ocean, and western Caribbean Sea, with 1 km spatial resolution. The products are obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images received at the Direct Readout Ground Station (located at CONABIO) after each overpass of the Aqua and Terra satellites. In addition, at the end of each week and month the system provides composite images for several ocean products, as well as weekly and monthly anomaly composites for chlorophyll-a concentration and sea surface temperature. These anomaly data are reported for the first time for the study region and represent valuable information for analyzing time series of ocean color data for the study of coastal and marine ecosystems in Mexico, Central America, and the western Caribbean.