138 resultados para Contexts of change and accountability
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper provides a review of the role played by volunteers within one particular offender management and reintegration scheme in the United Kingdom. Circles of Support and Accountability (COSA) draw on the expertise of volunteer members of the public to create supportive monitoring frameworks around sex offenders following their release from prison. The paper presents evidence as to the motivations of these volunteers, and argues that they play a crucial role in the success of the scheme, as they provide an instrumentally-useful form of reintegrative social contact to a socially-excluded offender population, and perform a symbolically important role as representatives of the wider community in taking ownership of offender management practices on behalf of the wider society. This is particularly significant in grounding those processes in the communicative practices of the social sphere, providing powerful reasons for intervention that reinforce the work that COSA do.
Resumo:
This paper investigates the impact of price consciousness, perceived risk, and ethical obligation on attitude and intention towards counterfeit products. Data were collected from a sample of 200 respondents via an online questionnaire. A conceptual model was derived and tested via structural equation modelling in the contexts of symbolic and experiential counterfeit products. Findings show differences in the factors (and weight thereof) impacting attitude and purchase intention in the two product contexts. Specifically, ethical obligation and perceived risk are found to be significant predictors of attitude towards both symbolic and counterfeit products, while price consciousness is found to predict only attitude towards experiential products, but not purchase intention in either counterfeit product context.
Resumo:
Purpose – This paper aims to explore the nature of the emerging discourse of private climate change reporting, which takes place in one-on-one meetings between institutional investors and their investee companies. Design/methodology/approach – Semi-structured interviews were conducted with representatives from 20 UK investment institutions to derive data which was then coded and analysed, in order to derive a picture of the emerging discourse of private climate change reporting, using an interpretive methodological approach, in addition to explorative analysis using NVivo software. Findings – The authors find that private climate change reporting is dominated by a discourse of risk and risk management. This emerging risk discourse derives from institutional investors' belief that climate change represents a material risk, that it is the most salient sustainability issue, and that their clients require them to manage climate change-related risk within their portfolio investment. It is found that institutional investors are using the private reporting process to compensate for the acknowledged inadequacies of public climate change reporting. Contrary to evidence indicating corporate capture of public sustainability reporting, these findings suggest that the emerging private climate change reporting discourse is being captured by the institutional investment community. There is also evidence of an emerging discourse of opportunity in private climate change reporting as the institutional investors are increasingly aware of a range of ways in which climate change presents material opportunities for their investee companies to exploit. Lastly, the authors find an absence of any ethical discourse, such that private climate change reporting reinforces rather than challenges the “business case” status quo. Originality/value – Although there is a wealth of sustainability reporting research, there is no academic research on private climate change reporting. This paper attempts to fill this gap by providing rich interview evidence regarding the nature of the emerging private climate change reporting discourse.
Resumo:
Purpose – This paper aims to explore the nature of the emerging discourse of private climate change reporting, which takes place in one-on-one meetings between institutional investors and their investee companies. Design/methodology/approach – Semi-structured interviews were conducted with representatives from 20 UK investment institutions to derive data which was then coded and analysed, in order to derive a picture of the emerging discourse of private climate change reporting, using an interpretive methodological approach, in addition to explorative analysis using NVivo software. Findings – The authors find that private climate change reporting is dominated by a discourse of risk and risk management. This emerging risk discourse derives from institutional investors' belief that climate change represents a material risk, that it is the most salient sustainability issue, and that their clients require them to manage climate change-related risk within their portfolio investment. It is found that institutional investors are using the private reporting process to compensate for the acknowledged inadequacies of public climate change reporting. Contrary to evidence indicating corporate capture of public sustainability reporting, these findings suggest that the emerging private climate change reporting discourse is being captured by the institutional investment community. There is also evidence of an emerging discourse of opportunity in private climate change reporting as the institutional investors are increasingly aware of a range of ways in which climate change presents material opportunities for their investee companies to exploit. Lastly, the authors find an absence of any ethical discourse, such that private climate change reporting reinforces rather than challenges the “business case” status quo. Originality/value – Although there is a wealth of sustainability reporting research, there is no academic research on private climate change reporting. This paper attempts to fill this gap by providing rich interview evidence regarding the nature of the emerging private climate change reporting discourse.
Resumo:
Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.
Resumo:
Changes to the behaviour of subseasonal precipitation extremes and active-break cycles of the Indian summer monsoon are assessed in this study using pre-industrial and 2 × CO2 integrations of the Hadley Centre coupled model HadCM3, which is able to simulate the monsoon seasonal cycle reasonably. At 2 × CO2, mean summer rainfall increases slightly, especially over central and northern India. The mean intensity of daily precipitation during the monsoon is found to increase, consistent with fewer wet days, and there are increases to heavy rain events beyond changes in the mean alone. The chance of reaching particular thresholds of heavy rainfall is found to approximately double over northern India, increasing the likelihood of damaging floods on a seasonal basis. The local distribution of such projections is uncertain, however, given the large spread in mean monsoon rainfall change and associated extremes amongst even the most recent coupled climate models. The measured increase of the heaviest precipitation events over India is found to be broadly in line with the degree of atmospheric warming and associated increases in specific humidity, lending a degree of predictability to changes in rainfall extremes. Active-break cycles of the Indian summer monsoon, important particularly due to their effect on agricultural output, are shown to be reasonably represented in HadCM3, in particular with some degree of northward propagation. We note an intensification of both active and break events, particularly when measured against the annual cycle, although there is no suggestion of any change to the duration or likelihood of monsoon breaks. Copyright © 2009 Royal Meteorological Society
Resumo:
Sorghum (Sorghum bicolor L.) plants were grown in split pots in three Rothamsted soils with different soil pH values and phosphorus (P) contents. Ammonium addition resulted in higher plant dry weight and P content than comparable nitrate treatments. The pH of soils in the rhizosphere (0.51-mm average thickness) differed from the bulk soil depending on nitrogen (N) form and level. Ammonium application resulted in a pH decrease, but nitrate application slightly increased pH. To examine the effect of rhizosphere acidification on mobilization of phosphate, 0.5 M NaHCO3 extractable phosphate was measured. The lowering rhizosphere pH enhanced the solubility of P in the soil and maybe availability of P to plants. Rhizosphere-P depletion increased with increasing ammonium supply, but when N was supplied as nitrate, P depletion was not related to increasing nitrate supply. Low P status Hoosfield soils developed mycorrhizal infection., and as a result, P inflow was increased. Geescroft soil, which initially had a high P status, did not develop mycorrhizal infection, and P inflow was much smaller and was unaffected by N treatments. Therefore, plant growth and P uptake were influenced by both rhizosphere pH and indigenous mycorrhizal infection.
Resumo:
Sorghum (Sorghum bicolor) was grown for 40 days in. rhizocylinder (a growth container which permitted access to rh zosphere and nonrhizosphere soil), in two soils of low P status. Soils were fertilized with different rates of ammonium and nitrate and supplemented with 40 mg phosphorus (P) kg(-1) and inoculated with either Glomus mosseae (Nicol. and Gerd.) or nonmycorrhizal root inoculum.. N-serve (2 mg kg(-1)) was added to prevent nitrification. At harvest, soil from around the roots was collected at distances of 0-5, 5-10, and 10-20 mm from the root core which was 35 mm diameter. Sorghum plants, with and without mycorrhiza, grew larger with NH4+ than with NO3- application. After measuring soil pH, 4 3 suspensions of the same sample were titrated against 0.01 M HCl or 0.01 M NaOH until soil pH reached the nonplanted pH level. The acid or base requirement for each sample was calculated as mmol H+ or OFF kg(-1) soil. The magnitude of liberated acid or base depended on the form and rate of nitrogen and soil type. When the plant root was either uninfected or infected with mycorrhiza., soil pH changes extended up to 5 mm from the root core surface. In both soils, ammonium as an N source resulted in lower soil pH than nitrate. Mycorrhizal (VAM) inoculation did not enhance this difference. In mycorrhizal inoculated soil, P depletion extended tip to 20 mm from the root surface. In non-VAM inoculated soil P depletion extended up to 10 mm from the root surface and remained unchanged at greater distances. In the mycorrhizal inoculated soils, the contribution of the 0-5 mm soil zone to P uptake was greater than the core soil, which reflects the hyphal contribution to P supply. Nitrogen (N) applications that caused acidification increased P uptake because of increased demand; there is no direct evidence that the increased uptake was due to acidity increasing the solubility of P although this may have been a minor effect.
Resumo:
Solar outputs during the current solar minimum are setting record low values for the space age. Evidence is here reviewed that this is part of a decline in solar activity from a grand solar maximum and that the Sun has returned to a state that last prevailed in 1924. Recent research into what this means, and does not mean, for climate change is reviewed.
Resumo:
Crop production is inherently sensitive to variability in climate. Temperature is a major determinant of the rate of plant development and, under climate change, warmer temperatures that shorten development stages of determinate crops will most probably reduce the yield of a given variety. Earlier crop flowering and maturity have been observed and documented in recent decades, and these are often associated with warmer (spring) temperatures. However, farm management practices have also changed and the attribution of observed changes in phenology to climate change per se is difficult. Increases in atmospheric [CO2] often advance the time of flowering by a few days, but measurements in FACE (free air CO2 enrichment) field-based experiments suggest that elevated [CO2] has little or no effect on the rate of development other than small advances in development associated with a warmer canopy temperature. The rate of development (inverse of the duration from sowing to flowering) is largely determined by responses to temperature and photoperiod, and the effects of temperature and of photoperiod at optimum and suboptimum temperatures can be quantified and predicted. However, responses to temperature, and more particularly photoperiod, at supraoptimal temperature are not well understood. Analysis of a comprehensive data set of time to tassel initiation in maize (Zea mays) with a wide range of photoperiods above and below the optimum suggests that photoperiod modulates the negative effects of temperature above the optimum. A simulation analysis of the effects of prescribed increases in temperature (0-6 degrees C in + 1 degrees C steps) and temperature variability (0% and + 50%) on days to tassel initiation showed that tassel initiation occurs later, and variability was increased, as the temperature exceeds the optimum in models both with and without photoperiod sensitivity. However, the inclusion of photoperiod sensitivity above the optimum temperature resulted in a higher apparent optimum temperature and less variability in the time of tassel initiation. Given the importance of changes in plant development for crop yield under climate change, the effects of photoperiod and temperature on development rates above the optimum temperature clearly merit further research, and some of the knowledge gaps are identified herein.
Resumo:
An aggregated farm-level index, the Agri-environmental Footprint Index (AFI), based on multiple criteria methods and representing a harmonised approach to evaluation of EU agri-environmental schemes is described. The index uses a common framework for the design and evaluation of policy that can be customised to locally relevant agri-environmental issues and circumstances. Evaluation can be strictly policy-focused, or broader and more holistic in that context-relevant assessment criteria that are not necessarily considered in the evaluated policy can nevertheless be incorporated. The Index structure is flexible, and can respond to diverse local needs. The process of Index construction is interactive, engaging farmers and other relevant stakeholders in a transparent decision-making process that can ensure acceptance of the outcome, help to forge an improved understanding of local agri-environmental priorities and potentially increase awareness of the critical role of farmers in environmental management. The structure of the AFI facilitates post-evaluation analysis of relative performance in different dimensions of the agri-environment, permitting identification of current strengths and weaknesses, and enabling future improvement in policy design. Quantification of the environmental impact of agriculture beyond the stated aims of policy using an 'unweighted' form of the AFI has potential as the basis of an ongoing system of environmental audit within a specified agricultural context. (C) 2009 Elsevier Ltd. All rights reserved.