2 resultados para Contact mechanics

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mega-scale glacial lineations (MSGLs) are longitudinally aligned corrugations (ridge-groove structures 6-100 km long) in sediment produced subglacially. They are indicators of fast flow and a common signature of ice-stream beds. We develop a qualitative theory that accounts for their formation, and use numerical modelling, and observations of ice-stream beds to provide supporting evidence. Ice in contact with a rough (scale of 10-10(3) m) bedrock surface will mimic the form of the bed. Because of flow acceleration and convergence in ice-stream onset zones, the ice-base roughness elements experience transverse strain, transforming them from irregular bumps into longitudinally aligned keels of ice protruding downwards. Where such keels slide across a soft sedimentary bed, they plough through the sediments, carving elongate grooves, and deforming material up into intervening ridges. This explains MSGLs and has important implications for ice-stream mechanics. Groove ploughing provides the means to acquire new lubricating sediment and to transport large volumes of it downstream. Keels may provide basal drag in the force budget of ice streams, thereby playing a role in flow regulation and stability We speculate that groove ploughing permits significant ice-stream widening, thus facilitating high-magnitude ice discharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multicomponent nonideal gas lattice Boltzmann model by Shan and Chen (S-C) is used to study the immiscible displacement in a sinusoidal tube. The movement of interface and the contact point (contact line in three-dimension) is studied. Due to the roughness of the boundary, the contact point shows "stick-slip" mechanics. The "stick-slip" effect decreases as the speed of the interface increases. For fluids that are nonwetting, the interface is almost perpendicular to the boundaries at most time, although its shapes at different position of the tube are rather different. When the tube becomes narrow, the interface turns a complex curves rather than remains simple menisci. The velocity is found to vary considerably between the neighbor nodes close to the contact point, consistent with the experimental observation that the velocity is multi-values on the contact line. Finally, the effect of three boundary conditions is discussed. The average speed is found different for different boundary conditions. The simple bounce-back rule makes the contact point move fastest. Both the simple bounce-back and the no-slip bounce-back rules are more sensitive to the roughness of the boundary in comparison with the half-way bounce-back rule. The simulation results suggest that the S-C model may be a promising tool in simulating the displacement behaviour of two immiscible fluids in complex geometry.