37 resultados para Constraint solving
em CentAUR: Central Archive University of Reading - UK
Resumo:
4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.
Resumo:
The recently formulated metabolic theory of ecology has profound implications for the evolution of life histories. Metabolic rate constrains the scaling of production with body mass, so that larger organisms have lower rates of production on a mass-specific basis than smaller ones. Here, we explore the implications of this constraint for life-history evolution. We show that for a range of very simple life histories, Darwinian fitness is equal to birth rate minus death rate. So, natural selection maximizes birth and production rates and minimizes death rates. This implies that decreased body size will generally be favored because it increases production, so long as mortality is unaffected. Alternatively, increased body size will be favored only if it decreases mortality or enhances reproductive success sufficiently to override the preexisting production constraint. Adaptations that may favor evolution of larger size include niche shifts that decrease mortality by escaping predation or that increase fecundity by exploiting new abundant food sources. These principles can be generalized to better understand the intimate relationship between the genetic currency of evolution and the metabolic currency of ecology.
Resumo:
The well-studied link between psychotic traits and creativity is a subject of much debate. The present study investigated the extent to which schizotypic personality traits - as measured by O-LIFE (Oxford-Liverpool Inventory of Feelings and Experiences) - equip healthy individuals to engage as groups in everyday tasks. From a sample of 69 students, eight groups of four participants - comprised of high, medium, or low-schizotypy individuals - were assembled to work as a team to complete a creative problem-solving task. Predictably, high scorers on the O-LIFE formulated a greater number of strategies to solve the task, indicative of creative divergent thinking. However, for task success (as measured by time taken to complete the problem) an inverted U shaped pattern emerged, whereby high and low-schizotypy groups were consistently faster than medium schizotypy groups. Intriguing data emerged concerning leadership within the groups, and other tangential findings relating to anxiety, competition and motivation were explored. These findings challenge the traditional cliche that psychotic personality traits are linearly related to creative performance, and suggest that the nature of the problem determines which thinking styles are optimally equipped to solve it. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper is directed to the advanced parallel Quasi Monte Carlo (QMC) methods for realistic image synthesis. We propose and consider a new QMC approach for solving the rendering equation with uniform separation. First, we apply the symmetry property for uniform separation of the hemispherical integration domain into 24 equal sub-domains of solid angles, subtended by orthogonal spherical triangles with fixed vertices and computable parameters. Uniform separation allows to apply parallel sampling scheme for numerical integration. Finally, we apply the stratified QMC integration method for solving the rendering equation. The superiority our QMC approach is proved.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
Typically, the relationship between insect development and temperature is described by two characteristics: the minimum temperature needed for development to occur (T-min) and the number of day degrees required (DDR) for the completion of development. We investigated these characteristics in three English populations of Thrips major and T tabaci [Cawood, Yorkshire (N53degrees49', W1degrees7'); Boxworth, Cambridgeshire (N52degrees15', W0degrees1'); Silwood Park, Berkshire (N51degrees24', W0degrees38')], and two populations of Frankliniella occidentalis (Cawood; Silwood Park). While there were no significant differences among populations in either T-min (mean for T major = 7.0degreesC; T tabaci = 5.9degreesC; F. occidentalis = 6.7degreesC) or DDR (mean for T major = 229.9; T tabaci = 260.8; F occidentalis = 233.4), there were significant differences in the relationship between temperature and body size, suggesting the presence of geographic variation in this trait. Using published data, in addition to those newly collected, we found a negative relationship between T-min. and DDR for F occidentalis and T tabaci, supporting the hypothesis that a trade-off between T-min and DDR may constrain adaptation to local climatic conditions.