55 resultados para Computer-based assessment
em CentAUR: Central Archive University of Reading - UK
Resumo:
Dietary assessment in older adults can be challenging. The Novel Assessment of Nutrition and Ageing (NANA) method is a touch-screen computer-based food record that enables older adults to record their dietary intakes. The objective of the present study was to assess the relative validity of the NANA method for dietary assessment in older adults. For this purpose, three studies were conducted in which a total of ninety-four older adults (aged 65–89 years) used the NANA method of dietary assessment. On a separate occasion, participants completed a 4 d estimated food diary. Blood and 24 h urine samples were also collected from seventy-six of the volunteers for the analysis of biomarkers of nutrient intake. The results from all the three studies were combined, and nutrient intake data collected using the NANA method were compared against the 4 d estimated food diary and biomarkers of nutrient intake. Bland–Altman analysis showed a reasonable agreement between the dietary assessment methods for energy and macronutrient intake; however, there were small, but significant, differences for energy and protein intake, reflecting the tendency for the NANA method to record marginally lower energy intakes. Significant positive correlations were observed between urinary urea and dietary protein intake using both the NANA and the 4 d estimated food diary methods, and between plasma ascorbic acid and dietary vitamin C intake using the NANA method. The results demonstrate the feasibility of computer-based dietary assessment in older adults, and suggest that the NANA method is comparable to the 4 d estimated food diary, and could be used as an alternative to the food diary for the short-term assessment of an individual’s dietary intake.
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
A model-based assessment of the effects of projected climate change on the water resources of Jordan
Resumo:
This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
Research shows that poor indoor air quality (IAQ) in school buildings can cause a reduction in the students’ performance assessed by short-term computer-based tests; whereas good air quality in classrooms can enhance children's concentration and also teachers’ productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect IAQ. In school classrooms, the occupancy density is high (1.8–2.4 m2/person) compared to offices (10 m2/person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project, which will aim to investigate the effect of IAQ and ventilation rates on pupils’ performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms. The air quality, ventilation rates and pupils’ performance in classrooms will be evaluated in parallel measurements. In addition, Visual Analogue Scales will be used to assess subjective perception of the classroom environment and SBS symptoms. Pupil performance will be measured with Computerised Assessment Tests (CAT), and Pen and Paper Performance Tasks while physical parameters of the classroom environment will be recorded using an advanced data logging system. A total number of 20 primary schools in the Reading area are expected to participate in the present investigation, and the pupils participating in this study will be within the age group of 9–11 years. On completion of the project, based on the overall data recommendations for suitable ventilation rates for schools will be formulated.
Resumo:
Research shows that poor indoor air quality (IAQ) in school buildings can cause a reduction in the students' performance assessed by short-term computer-based tests: whereas good air quality in classrooms can enhance children's concentration and also teachers' productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect IAQ. In school classrooms, the occupancy density is high (1.8-2.4m(2)/person) compared to offices (10 m(2)/person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project, which will aim to investigate the effect of IAQ and ventilation rates on pupils' performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms. The air quality, ventilation rates and pupils' performance in classrooms will be evaluated in parallel measurements. In addition, Visual Analogue Scales will be used to assess subjective perception of the classroom environment and SBS symptoms. Pupil performance will be measured with Computerised Assessment Tests (CAT), and Pen and Paper Performance Tasks while physical parameters of the classroom environment will be recorded using an advanced data logging system. A total number of 20 primary schools in the Reading area are expected to participate in the present investigation, and the pupils participating in this study will be within the age group of 9-11 years. On completion of the project, based oil the overall data recommendations for suitable ventilation rates for schools will be formulated. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Several methods for assessing the sustainability of agricultural systems have been developed. These methods do not fully: (i) take into account the multi‐functionality of agriculture; (ii) include multidimensionality; (iii) utilize and implement the assessment knowledge; and (iv) identify conflicting goals and trade‐offs. This paper reviews seven recently developed multidisciplinary indicator‐based assessment methods with respect to their contribution to these shortcomings. All approaches include (1) normative aspects such as goal setting, (2) systemic aspects such as a specification of scale of analysis, (3) a reproducible structure of the approach. The approaches can be categorized into three typologies. The top‐down farm assessments focus on field or farm assessment. They have a clear procedure for measuring the indicators and assessing the sustainability of the system, which allows for benchmarking across farms. The degree of participation is low, potentially affecting the implementation of the results negatively. The top‐down regional assessment assesses the on‐farm and the regional effects. They include some participation to increase acceptance of the results. However, they miss the analysis of potential trade‐offs. The bottom‐up, integrated participatory or transdisciplinary approaches focus on a regional scale. Stakeholders are included throughout the whole process assuring the acceptance of the results and increasing the probability of implementation of developed measures. As they include the interaction between the indicators in their system representation, they allow for performing a trade‐off analysis. The bottom‐up, integrated participatory or transdisciplinary approaches seem to better overcome the four shortcomings mentioned above.
Resumo:
Methods for assessing the sustainability of agricultural systems do often not fully (i) take into account the multifunctionality of agriculture, (ii) include multidimensionality, (iii) utilize and implement the assessment knowledge and (iv) identify conflicting goals and trade-offs. This chapter reviews seven recently developed multidisciplinary indicator-based assessment methods with respect to their contribution to these shortcomings. All approaches include (1) normative aspects such as goal setting, (2) systemic aspects such as a specification of scale of analysis and (3) a reproducible structure of the approach. The approaches can be categorized into three typologies: first, top-down farm assessments, which focus on field or farm assessment; second, top-down regional assessments, which assess the on-farm and the regional effects; and third, bottom-up, integrated participatory or transdisciplinary approaches, which focus on a regional scale. Our analysis shows that the bottom-up, integrated participatory or transdisciplinary approaches seem to better overcome the four shortcomings mentioned above.
Resumo:
Research shows that poor indoor air quality in school buildings can cause a reduction in the students' performance assessed by short term computer based tests; whereas good air quality in classrooms can enhance children's concentration and also teachers' productivity. Investigation of air quality in classrooms helps us to characterise pollutant levels and implement corrective measures. Outdoor pollution, ventilation equipment, furnishings, and human activities affect indoor air quality. In school classrooms the occupancy density is high (1.8 to 2.4 m(2)/person) compared to offices (10 m(2) /person). Ventilation systems expend energy and there is a trend to save energy by reducing ventilation rates. We need to establish the minimum acceptable level of fresh air required for the health of the occupants. This paper describes a project which will aim to investigate the effect of indoor air quality and ventilation rates on pupils' performance and health using psychological tests. The aim is to recommend suitable ventilation rates for classrooms and examine the suitability of the air quality guidelines for classrooms.
Resumo:
Mathematical models devoted to different aspects of building studies and brought about a significant shift in the way we view buildings. From this background a new definition of building has emerged known as intelligent building that requires integration of a variety of computer-based complex systems. Research relevant to intelligent continues to grow at a much faster pace. This paper is a review of different mathematical models described in literature, which make use of different mathematical methodologies, and are intended for intelligent building studies without complex mathematical details. Models are discussed under a wide classification. Mathematical abstract level of the applied models is detailed and integrated with its literature. The goal of this paper is to present a comprehensive account of the achievements and status of mathematical models in intelligent building research. and to suggest future directions in models.
Resumo:
Probiotics—live microorganisms that when administered in adequate amounts confer a health benefit on the host—have been studied for both human and animal applications, and worldwide research on this topic has accelerated in recent years. This paper reviews the literature on probiotics, describes how probiotics work in human ecosystems, and outlines the impact of probiotics on human health and disease. The paper also addresses safety issues of probiotic use, suggests future developments in the field of probiotics, and provides research and policy recommendations. Product considerations and potential future developments regarding probiotics also are discussed. The authors conclude that controlled human studies have revealed a diverse range of health benefits from consumption of probiotics, due largely to their impact on immune function or on microbes colonizing the body. Additional, well-designed and properly controlled human and mechanistic studies with probiotics will advance the essential understanding of active principles, mechanisms of action, and degree of effects that can be realized by specific consumer groups. Recommendations include establishment of a standard of identity for the term “probiotic,” adoption of third-party verification of label claims, use of probiotics selectively in clinical conditions, and use of science-based assessment of the benefits and risks of genetically engineered probiotic microbes.
Resumo:
The Java language first came to public attention in 1995. Within a year, it was being speculated that Java may be a good language for parallel and distributed computing. Its core features, including being objected oriented and platform independence, as well as having built-in network support and threads, has encouraged this view. Today, Java is being used in almost every type of computer-based system, ranging from sensor networks to high performance computing platforms, and from enterprise applications through to complex research-based.simulations. In this paper the key features that make Java a good language for parallel and distributed computing are first discussed. Two Java-based middleware systems, namely MPJ Express, an MPI-like Java messaging system, and Tycho, a wide-area asynchronous messaging framework with an integrated virtual registry are then discussed. The paper concludes by highlighting the advantages of using Java as middleware to support distributed applications.
Resumo:
Fine roots play an important part in forest carbon, nutrient and water cycles. The turnover of fine roots constitutes a major carbon input to soils. Estimation of fine root turnover is difficult, labour intensive and is often compounded by artefacts created by soil disturbance. In this work, an alternative approach of using inclusion nets installed in an undisturbed soil profile was used to measure fine root production and was compared to the in-growth core method. There was no difference between fine root production estimated by the two methods in three southern taiga sites with contrasting soil conditions and tree species composition in the Central Forest State Biosphere Reserve, Russia. Expressed as annual production over standing biomass, Norway spruce fine root turnover was in the region of 0.10 to 0.24 y-1. The inclusion net technique is suitable for field based assessment of fine root production. There are several advantages over the in-growth core method, due to non-disturbance of the soil profile and its potential for very high rate of replication.
Resumo:
This paper discusses how the use of computer-based modelling tools has aided the design of a telemetry unit for use with oil well logging. With the aid of modern computer-based simulation techniques, the new design is capable of operating at data rates of 2.5 times faster than previous designs.