142 resultados para Computer geometry
em CentAUR: Central Archive University of Reading - UK
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.
Resumo:
This paper discusses and compares the use of vision based and non-vision based technologies in developing intelligent environments. By reviewing the related projects that use vision based techniques in intelligent environment design, the achieved functions, technical issues and drawbacks of those projects are discussed and summarized, and the potential solutions for future improvement are proposed, which leads to the prospective direction of my PhD research.
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
Resumo:
Interactions using a standard computer mouse can be particularly difficult for novice and older adult users. Tasks that involve positioning the mouse over a target and double-clicking to initiate some action can be a real challenge for many users. Hence, this paper describes a study that investigates the double-click interactions of older and younger adults and presents data that can help inform the development of methods of assistance. Twelve older adults (mean age = 63.9 years) and 12 younger adults (mean age = 20.8 years) performed click and double-click target selections with a computer mouse. Initial results show that older users make approximately twice as many errors as younger users when attempting double-clicks. For both age groups, the largest proportion of errors was due to difficulties with keeping the cursor steady between button presses. Compared with younger adults, older adults experienced more difficulties with performing two button presses within a required time interval. Understanding these interactions better is a step towards improving accessibility, and may provide some suggestions for future directions of research in this area.
Resumo:
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
Resumo:
A computer game was used to study psychophysiological reactions to emotion-relevant events. Two dimensions proposed by Scherer (1984a, 1984b) in his appraisal theory, the intrinsic pleasantness and goal conduciveness of game events, were studied in a factorial design. The relative level at which a player performed at the moment of an event was also taken into account. A total of 33 participants played the game while cardiac activity, skin conductance, skin temperature, and muscle activity as well as emotion self-reports were assessed. The self-reports indicate that game events altered levels of pride, joy, anger, and surprise. Goal conduciveness had little effect on muscle activity but was associated with significant autonomic effects, including changes to interbeat interval, pulse transit time, skin conductance, and finger temperature. The manipulation of intrinsic pleasantness had little impact on physiological responses. The results show the utility of attempting to manipulate emotion-constituent appraisals and measure their peripheral physiological signatures.
Resumo:
In order to gain a better understanding of online conceptual collaborative design processes this paper investigates how student designers make use of a shared virtual synchronous environment when engaged in conceptual design. The software enables users to talk to each other and share sketches when they are remotely located. The paper describes a novel methodology for observing and analysing collaborative design processes by adapting the concepts of grounded theory. Rather than concentrating on narrow aspects of the final artefacts, emerging “themes” are generated that provide a broader picture of collaborative design process and context descriptions. Findings on the themes of “grounding – mutual understanding” and “support creativity” complement findings from other research, while important themes associated with “near-synchrony” have not been emphasised in other research. From the study, a series of design recommendations are made for the development of tools to support online computer-supported collaborative work in design using a shared virtual environment.