154 resultados para Computer Music
em CentAUR: Central Archive University of Reading - UK
Resumo:
A Brain-computer music interface (BCMI) is developed to allow for continuous modification of the tempo of dynamically generated music. Six out of seven participants are able to control the BCMI at significant accuracies and their performance is observed to increase over time.
Resumo:
Computer music usually sounds mechanical; hence, if musicality and music expression of virtual actors could be enhanced according to the user’s mood, the quality of experience would be amplified. We present a solution that is based on improvisation using cognitive models, case based reasoning (CBR) and fuzzy values acting on close-to-affect-target musical notes as retrieved from CBR per context. It modifies music pieces according to the interpretation of the user’s emotive state as computed by the emotive input acquisition componential of the CALLAS framework. The CALLAS framework incorporates the Pleasure-Arousal-Dominance (PAD) model that reflects emotive state of the user and represents the criteria for the music affectivisation process. Using combinations of positive and negative states for affective dynamics, the octants of temperament space as specified by this model are stored as base reference emotive states in the case repository, each case including a configurable mapping of affectivisation parameters. Suitable previous cases are selected and retrieved by the CBR subsystem to compute solutions for new cases, affect values from which control the music synthesis process allowing for a level of interactivity that makes way for an interesting environment to experiment and learn about expression in music.
Resumo:
Research evaluating perceptual responses to music has identified many structural features as correlates that might be incorporated in computer music systems for affectively charged algorithmic composition and/or expressive music performance. In order to investigate the possible integration of isolated musical features to such a system, a discrete feature known to correlate some with emotional responses – rhythmic density – was selected from a literature review and incorporated into a prototype system. This system produces variation in rhythm density via a transformative process. A stimulus set created using this system was then subjected to a perceptual evaluation. Pairwise comparisons were used to scale differences between 48 stimuli. Listener responses were analysed with Multidimensional scaling (MDS). The 2-Dimensional solution was then rotated to place the stimuli with the largest range of variation across the horizontal plane. Stimuli with variation in rhythmic density were placed further from the source material than stimuli that were generated by random permutation. This, combined with the striking similarity between the MDS scaling and that of the 2-dimensional emotional model used by some affective algorithmic composition systems, suggests that isolated musical feature manipulation can now be used to parametrically control affectively charged automated composition in a larger system.
Resumo:
The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.
Resumo:
This paper discusses and compares the use of vision based and non-vision based technologies in developing intelligent environments. By reviewing the related projects that use vision based techniques in intelligent environment design, the achieved functions, technical issues and drawbacks of those projects are discussed and summarized, and the potential solutions for future improvement are proposed, which leads to the prospective direction of my PhD research.
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
Resumo:
Interactions using a standard computer mouse can be particularly difficult for novice and older adult users. Tasks that involve positioning the mouse over a target and double-clicking to initiate some action can be a real challenge for many users. Hence, this paper describes a study that investigates the double-click interactions of older and younger adults and presents data that can help inform the development of methods of assistance. Twelve older adults (mean age = 63.9 years) and 12 younger adults (mean age = 20.8 years) performed click and double-click target selections with a computer mouse. Initial results show that older users make approximately twice as many errors as younger users when attempting double-clicks. For both age groups, the largest proportion of errors was due to difficulties with keeping the cursor steady between button presses. Compared with younger adults, older adults experienced more difficulties with performing two button presses within a required time interval. Understanding these interactions better is a step towards improving accessibility, and may provide some suggestions for future directions of research in this area.
Resumo:
Since the advent of the internet in every day life in the 1990s, the barriers to producing, distributing and consuming multimedia data such as videos, music, ebooks, etc. have steadily been lowered for most computer users so that almost everyone with internet access can join the online communities who both produce, consume and of course also share media artefacts. Along with this trend, the violation of personal data privacy and copyright has increased with illegal file sharing being rampant across many online communities particularly for certain music genres and amongst the younger age groups. This has had a devastating effect on the traditional media distribution market; in most cases leaving the distribution companies and the content owner with huge financial losses. To prove that a copyright violation has occurred one can deploy fingerprinting mechanisms to uniquely identify the property. However this is currently based on only uni-modal approaches. In this paper we describe some of the design challenges and architectural approaches to multi-modal fingerprinting currently being examined for evaluation studies within a PhD research programme on optimisation of multi-modal fingerprinting architectures. Accordingly we outline the available modalities that are being integrated through this research programme which aims to establish the optimal architecture for multi-modal media security protection over the internet as the online distribution environment for both legal and illegal distribution of media products.
Resumo:
A computer game was used to study psychophysiological reactions to emotion-relevant events. Two dimensions proposed by Scherer (1984a, 1984b) in his appraisal theory, the intrinsic pleasantness and goal conduciveness of game events, were studied in a factorial design. The relative level at which a player performed at the moment of an event was also taken into account. A total of 33 participants played the game while cardiac activity, skin conductance, skin temperature, and muscle activity as well as emotion self-reports were assessed. The self-reports indicate that game events altered levels of pride, joy, anger, and surprise. Goal conduciveness had little effect on muscle activity but was associated with significant autonomic effects, including changes to interbeat interval, pulse transit time, skin conductance, and finger temperature. The manipulation of intrinsic pleasantness had little impact on physiological responses. The results show the utility of attempting to manipulate emotion-constituent appraisals and measure their peripheral physiological signatures.