7 resultados para Computational Identification
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Resumo:
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.
Resumo:
This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein–ligand interactions has become extremely important to help determine a protein’s functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein–ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.