5 resultados para Complexity science
em CentAUR: Central Archive University of Reading - UK
Resumo:
It is argued that the truth status of emergent properties of complex adaptive systems models should be based on an epistemology of proof by constructive verification and therefore on the ontological axioms of a non-realist logical system such as constructivism or intuitionism. ‘Emergent’ properties of complex adaptive systems (CAS) models create particular epistemological and ontological challenges. These challenges bear directly on current debates in the philosophy of mathematics and in theoretical computer science. CAS research, with its emphasis on computer simulation, is heavily reliant on models which explore the entailments of Formal Axiomatic Systems (FAS). The incompleteness results of Gödel, the incomputability results of Turing, and the Algorithmic Information Theory results of Chaitin, undermine a realist (platonic) truth model of emergent properties. These same findings support the hegemony of epistemology over ontology and point to alternative truth models such as intuitionism, constructivism and quasi-empiricism.
Resumo:
In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.
Resumo:
The problem of complexity is particularly relevant to the field of control engineering, since many engineering problems are inherently complex. The inherent complexity is such that straightforward computational problem solutions often produce very poor results. Although parallel processing can alleviate the problem to some extent, it is artificial neural networks (in various forms) which have recently proved particularly effective, even in dealing with the causes of the problem itself. This paper presents an overview of the current neural network research being undertaken. Such research aims to solve the complex problems found in many areas of science and engineering today.
Resumo:
Improved udder health requires consistent application of appropriate management practices by those involved in managing dairy herds and the milking process. Designing effective communication requires that we understand why dairy herd managers behave in the way they do and also how the means of communication can be used both to inform and to influence. Social sciences- ranging from economics to anthropology - have been used to shed light on the behaviour of those who manage farm animals. Communication science tells us that influencing behaviour is not simply a question of „getting the message across‟ but of addressing the complex of factors that influence an individual‟s behavioural decisions. A review of recent studies in the animal health literature shows that different social science frameworks and methodologies offer complementary insights into livestock managers‟ behaviour but that the diversity of conceptual and methodological frameworks presents a challenge for animal health practitioners and policy makers who seek to make sense of the findings – and for researchers looking for helpful starting points. Data from a recent study in England illustrate the potential of „home-made‟ conceptual frameworks to help unravel the complexity of farmer behaviour. At the same time, though, the data indicate the difficulties facing those designing communication strategies in a context where farmers believe strongly that they are already doing all they can reasonably be expected to do to minimise animal health risks.
Resumo:
This article examines selected methodological insights that complexity theory might provide for planning. In particular, it focuses on the concept of fractals and, through this concept, how ways of organising policy domains across scales might have particular causal impacts. The aim of this article is therefore twofold: (a) to position complexity theory within social science through a ‘generalised discourse’, thereby orienting it to particular ontological and epistemological biases and (b) to reintroduce a comparatively new concept – fractals – from complexity theory in a way that is consistent with the ontological and epistemological biases argued for, and expand on the contribution that this might make to planning. Complexity theory is theoretically positioned as a neo-systems theory with reasons elaborated. Fractal systems from complexity theory are systems that exhibit self-similarity across scales. This concept (as previously introduced by the author in ‘Fractal spaces in planning and governance’) is further developed in this article to (a) illustrate the ontological and epistemological claims for complexity theory, and to (b) draw attention to ways of organising policy systems across scales to emphasise certain characteristics of the systems – certain distinctions. These distinctions when repeated across scales reinforce associated processes/values/end goals resulting in particular policy outcomes. Finally, empirical insights from two case studies in two different policy domains are presented and compared to illustrate the workings of fractals in planning practice.