4 resultados para Compósitos cimentícios. Resíduo de borracha de pneu. Brita calcária.Deformação

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is a key feature of the metabolic syndrome. Lifestyle and dietary changes may affect blood pressure (BP), but the knowledge of the effects of dietary fat modification in subjects with the metabolic syndrome is limited. The objective of the present study was to investigate the effect of an isoenergetic change in the quantity and quality of dietary fat on BP in subjects with the metabolic syndrome. In a 12-week European multi-centre, parallel, randomised controlled dietary intervention trial (LIPGENE), 486 subjects were assigned to one of the four diets distinct in fat quantity and quality: two high-fat diets rich in saturated fat or monounsaturated fat and two low-fat, high-complex carbohydrate diets with or without 1·2 g/d of very long-chain n-3 PUFA supplementation. There were no overall differences in systolic BP (SBP), diastolic BP or pulse pressure (PP) between the dietary groups after the intervention. The high-fat diet rich in saturated fat had minor unfavourable effects on SBP and PP in males.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene–nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene–nutrient interactions. Results Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene–nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies within the QLIF project reviewed in this article suggest that organic or low-input management is more likely to result in milk with fatty acid profiles that are higher in α-linolenic acid and/or beneficial isomers of conjugated linoleic acid and antioxidants with up to a 2.5-fold increase in some cases, relative to milk from conventional production. These advantages are preserved during processing, resulting in elevated contents or concentrations of these constituents in processed dairy products of organic or low input origin. Much of the literature suggests that these benefits are very likely to be a result of a greater reliance on forages in the dairy diets (especially grazed grass). Since the adoption of alternative breeds or crosses is often an integral part sustaining these low-input systems, it is not possible to rule out an interaction with genotype in these monitored herds. The results suggest that milk fat composition with respect to human health can be optimized by exploiting grazing in the diet of dairy cows. However, in many European regions this may not be possible due to extremes in temperature, soil moisture levels or both. In such cases milk quality can be maintained by the inclusion of oil seeds in the dairy diets.