5 resultados para Common Variable Immunodeficiency
em CentAUR: Central Archive University of Reading - UK
Resumo:
Biological Crossover occurs during the early stages of meiosis. During this process the chromosomes undergoing crossover are synapsed together at a number of homogenous sequence sections, it is within such synapsed sections that crossover occurs. The SVLC (Synapsing Variable Length Crossover) Algorithm recurrently synapses homogenous genetic sequences together in order of length. The genomes are considered to be flexible with crossover only being permitted within the synapsed sections. Consequently, common sequences are automatically preserved with only the genetic differences being exchanged, independent of the length of such differences. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be utilised. In a simple variable length test problem the SVLC algorithm outperforms current variable length crossover techniques.
Synapsing variable length crossover: An algorithm for crossing and comparing variable length genomes
Resumo:
The Synapsing Variable Length Crossover (SVLC) algorithm provides a biologically inspired method for performing meaningful crossover between variable length genomes. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be used with variable length genomes. Unlike other variable length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC Algorithm recurrently "glues" or synapses homogenous genetic sub-sequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable length test problem the SVLC algorithm is shown to outperform current variable length crossover techniques. The SVLC algorithm is also shown to work in a more realistic robot neural network controller evolution application.
Resumo:
The synapsing variable-length crossover (SVLC algorithm provides a biologically inspired method for performing meaningful crossover between variable-length genomes. In addition to providing a rationale for variable-length crossover, it also provides a genotypic similarity metric for variable-length genomes, enabling standard niche formation techniques to be used with variable-length genomes. Unlike other variable-length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC algorithm recurrently "glues" or synapses homogenous genetic subsequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable-length test problem, the SVLC algorithm compares favorably with current variable-length crossover techniques. The variable-length approach is further advocated by demonstrating how a variable-length genetic algorithm (GA) can obtain a high fitness solution in fewer iterations than a traditional fixed-length GA in a two-dimensional vector approximation task.
Resumo:
We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S. enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.
Resumo:
Summary Reasons for performing study: Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu. Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area. Study design: This study was performed using seven Thoroughbreds in race training at a single time-point. Urine and faecal samples were collected non-invasively and plasma was obtained from samples taken for routine clinical chemistry purposes. Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was achieved via a range of 1D and 2D experiments. Results: A total of 102 metabolites were assigned across the three biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host co-metabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short chain fatty acids were the predominant features identified within this biofluid by 1H-NMR spectroscopy. Conclusions: Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the purposes of metabonomic analysis.