65 resultados para Common Assessment Framework (CAF)
em CentAUR: Central Archive University of Reading - UK
Resumo:
Sustainable development requires the reconciliation of demands for biodiversity conservation and increased agricultural production. Assessing the impact of novel farming practices on biodiversity and ecosystem services is fundamental to this process. Using farmland birds as a model system, we present a generic risk assessment framework that accurately predicts each species' current conservation status and population growth rate associated with past changes in agriculture. We demonstrate its value by assessing the potential impact on biodiversity of two controversial land uses, genetically modified herbicide-tolerant crops and agri-environment schemes. This framework can be used to guide policy and land management decisions and to assess progress toward sustainability targets.
Resumo:
Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.
Resumo:
A self study course for learning to program using the C programming language has been developed. A Learning Object approach was used in the design of the course. One of the benefits of the Learning Object approach is that the learning material can be reused for different purposes. 'Me course developed is designed so that learners can choose the pedagogical approach most suited to their personal learning requirements. For all learning approaches a set of common Assessment Learning Objects (ALOs or tests) have been created. The design of formative assessments with ALOs can be carried out by the Instructional Designer grouping ALOs to correspond to a specific assessment intention. The course is non-credit earning, so there is no summative assessment, all assessment is formative. In this paper examples of ALOs and their uses is presented together with their uses as decided by the Instructional Designer and learner. Personalisation of the formative assessment of skills can be decided by the Instructional Designer or the learner using a repository of pre-designed ALOs. The process of combining ALOs can be carried out manually or in a semi-automated way using metadata that describes the ALO and the skill it is designed to assess.
Resumo:
We describe the HadGEM2 family of climate configurations of the Met Office Unified Model, MetUM. The concept of a model "family" comprises a range of specific model configurations incorporating different levels of complexity but with a common physical framework. The HadGEM2 family of configurations includes atmosphere and ocean components, with and without a vertical extension to include a well-resolved stratosphere, and an Earth-System (ES) component which includes dynamic vegetation, ocean biology and atmospheric chemistry. The HadGEM2 physical model includes improvements designed to address specific systematic errors encountered in the previous climate configuration, HadGEM1, namely Northern Hemisphere continental temperature biases and tropical sea surface temperature biases and poor variability. Targeting these biases was crucial in order that the ES configuration could represent important biogeochemical climate feedbacks. Detailed descriptions and evaluations of particular HadGEM2 family members are included in a number of other publications, and the discussion here is limited to a summary of the overall performance using a set of model metrics which compare the way in which the various configurations simulate present-day climate and its variability.
Resumo:
When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.
Resumo:
In data fusion systems, one often encounters measurements of past target locations and then wishes to deduce where the targets are currently located. Recent research on the processing of such out-of-sequence data has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships between the algorithms so that any approximations made are explicit.
Resumo:
It is widely assumed that the British are poorer modern foreign language (MFL) learners than their fellow Europeans. Motivation has often been seen as the main cause of this perceived disparity in language learning success. However, there have also been suggestions that curricular and pedagogical factors may play a part. This article reports a research project investigating how German and English 14- to 16-year-old learners of French as a first foreign language compare to one another in their vocabulary knowledge and in the lexical diversity, accuracy and syntactic complexity of their writing. Students from comparable schools in Germany and England were set two writing tasks which were marked by three French native speakers using standardised criteria aligned to the Common European Framework of Reference (CEF). Receptive vocabulary size and lexical diversity were established by the X_lex test and a verb types measure respectively. Syntactic complexity and formal accuracy were respectively assessed using the mean length of T-units (MLTU) and words/error metrics. Students' and teachers' questionnaires and semi-structured interviews were used to provide information and participants' views on classroom practices, while typical textbooks and feedback samples were analysed to establish differences in materials-related input and feedback in the two countries. The German groups were found to be superior in vocabulary size, and in the accuracy, lexical diversity and overall quality – but not the syntactic complexity – of their writing. The differences in performance outcomes are analysed and discussed with regard to variables related to the educational contexts (e.g. curriculum design and methodology).
Resumo:
The environmental impacts of genetically modified crops is still a controversial issue in Europe. The overall risk assessment framework has recently been reinforced by the European Food Safety Authority(EFSA) and its implementation requires harmonized and efficient methodologies. The EU-funded research project AMIGA − Assessing and monitoring Impacts of Genetically modified plants on Agro-ecosystems − aims to address this issue, by providing a framework that establishes protection goals and baselines for European agro-ecosystems, improves knowledge on the potential long term environmental effects of genetically modified (GM) plants, tests the efficacy of the EFSA Guidance Document for the Environmental Risk Assessment, explores new strategies for post market monitoring, and provides a systematic analysis of economic aspects of Genetically Modified crops cultivation in the EU. Research focuses on ecological studies in different EU regions, the sustainability of GM crops is estimated by analysing the functional components of the agro-ecosystems and specific experimental protocols are being developed for this scope.
Resumo:
This study contributes to ongoing discussions on how measures of lexical diversity (LD) can help discriminate between essays from second language learners of English, whose work has been assessed as belonging to levels B1 to C2 of the Common European Framework of Reference (CEFR). The focus is in particular on how different operationalisations of what constitutes a “different word” (type) impact on the LD measures themselves and on their ability to discriminate between CEFR levels. The results show that basic measures of LD, such as the number of different words, the TTR (Templin 1957) and the Index of Guiraud (Guiraud 1954) explain more variance in the CEFR levels than sophisticated measures, such as D (Malvern et al. 2004), HD-D (McCarthy and Jarvis 2007) and MTLD (McCarthy 2005) provided text length is kept constant across texts. A simple count of different words (defined as lemma’s and not as word families) was the best predictor of CEFR levels and explained 22 percent of the variance in overall scores on the Pearson Test of English Academic in essays written by 176 test takers.
Resumo:
A wide variety of exposure models are currently employed for health risk assessments. Individual models have been developed to meet the chemical exposure assessment needs of Government, industry and academia. These existing exposure models can be broadly categorised according to the following types of exposure source: environmental, dietary, consumer product, occupational, and aggregate and cumulative. Aggregate exposure models consider multiple exposure pathways, while cumulative models consider multiple chemicals. In this paper each of these basic types of exposure model are briefly described, along with any inherent strengths or weaknesses, with the UK as a case study. Examples are given of specific exposure models that are currently used, or that have the potential for future use, and key differences in modelling approaches adopted are discussed. The use of exposure models is currently fragmentary in nature. Specific organisations with exposure assessment responsibilities tend to use a limited range of models. The modelling techniques adopted in current exposure models have evolved along distinct lines for the various types of source. In fact different organisations may be using different models for very similar exposure assessment situations. This lack of consistency between exposure modelling practices can make understanding the exposure assessment process more complex, can lead to inconsistency between organisations in how critical modelling issues are addressed (e.g. variability and uncertainty), and has the potential to communicate mixed messages to the general public. Further work should be conducted to integrate the various approaches and models, where possible and regulatory remits allow, to get a coherent and consistent exposure modelling process. We recommend the development of an overall framework for exposure and risk assessment with common approaches and methodology, a screening tool for exposure assessment, collection of better input data, probabilistic modelling, validation of model input and output and a closer working relationship between scientists and policy makers and staff from different Government departments. A much increased effort is required is required in the UK to address these issues. The result will be a more robust, transparent, valid and more comparable exposure and risk assessment process. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This document provides guidelines for fish stock assessment and fishery management using the software tools and other outputs developed by the United Kingdom's Department for International Development's Fisheries Management Science Programme (FMSP) from 1992 to 2004. It explains some key elements of the precautionary approach to fisheries management and outlines a range of alternative stock assessment approaches that can provide the information needed for such precautionary management. Four FMSP software tools, LFDA (Length Frequency Data Analysis), CEDA (Catch Effort Data Analysis), YIELD and ParFish (Participatory Fisheries Stock Assessment), are described with which intermediary parameters, performance indicators and reference points may be estimated. The document also contains examples of the assessment and management of multispecies fisheries, the use of Bayesian methodologies, the use of empirical modelling approaches for estimating yields and in analysing fishery systems, and the assessment and management of inland fisheries. It also provides a comparison of length- and age-based stock assessment methods. A CD-ROM with the FMSP software packages CEDA, LFDA, YIELD and ParFish is included.
Resumo:
When competing strategies for development programs, clinical trial designs, or data analysis methods exist, the alternatives need to be evaluated in a systematic way to facilitate informed decision making. Here we describe a refinement of the recently proposed clinical scenario evaluation framework for the assessment of competing strategies. The refinement is achieved by subdividing key elements previously proposed into new categories, distinguishing between quantities that can be estimated from preexisting data and those that cannot and between aspects under the control of the decision maker from those that are determined by external constraints. The refined framework is illustrated by an application to a design project for an adaptive seamless design for a clinical trial in progressive multiple sclerosis.
Resumo:
In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation (VIA) and mitigation) in order to provide assessment of mitigation and adaptation strategies and other VIA challenges. The scenario framework is organised around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments, comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across communities.
Resumo:
Sampling strategies for monitoring the status and trends in wildlife populations are often determined before the first survey is undertaken. However, there may be little information about the distribution of the population and so the sample design may be inefficient. Through time, as data are collected, more information about the distribution of animals in the survey region is obtained but it can be difficult to incorporate this information in the survey design. This paper introduces a framework for monitoring motile wildlife populations within which the design of future surveys can be adapted using data from past surveys whilst ensuring consistency in design-based estimates of status and trends through time. In each survey, part of the sample is selected from the previous survey sample using simple random sampling. The rest is selected with inclusion probability proportional to predicted abundance. Abundance is predicted using a model constructed from previous survey data and covariates for the whole survey region. Unbiased design-based estimators of status and trends and their variances are derived from two-phase sampling theory. Simulations over the short and long-term indicate that in general more precise estimates of status and trends are obtained using this mixed strategy than a strategy in which all of the sample is retained or all selected with probability proportional to predicted abundance. Furthermore the mixed strategy is robust to poor predictions of abundance. Estimates of status are more precise than those obtained from a rotating panel design.