14 resultados para Combinatorial Grassmannian

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL), for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins constituting the vast majority of species in any proteome, as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis. Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification / detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL capture is at least twice that of control, untreated sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL, for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins Constituting the vast majority of species in any proteome. as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis, Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic Compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification I detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL Capture is at least twice that of control, untreated sample. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adaptation is limited and that once outside the normal levels of size fluctuations, cells and tissues function in an aberant manner. In this study we examine the function of muscle in the myostatin null mouse which is an excellent model for hypertrophy beyond levels of normal growth and consequeces of acute starvation to restore mass. We show that muscle growth is sustained through protein synthesis driven by Serum/Glucocorticoid Kinase 1 (SGK1) rather than Akt1. Furthermore our metabonomic profiling of hypertrophic muscle shows that carbon from nutrient sources is being channelled for the production of biomass rather than ATP production. However the muscle displays elevated levels of autophagy and decreased levels of muscle tension. We demonstrate the myostatin null muscle is acutely sensitive to changes in diet and activates both the proteolytic and autophagy programmes and shutting down protein synthesis more extensively than is the case for wild-types. Poignantly we show that acute starvation which is detrimental to wild-type animals is beneficial in terms of metabolism and muscle function in the myostatin null mice by normalising tension production.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA compaction can be caused by multivalent ions as condensing agents. Both discontinuous (all-or-none) and continuous (pearl-necklace structure) transitions have been observed in experiments as the concentration of the condensing agent was increased. We have investigated the DNA transition by analytical calculations in the infinite-chain limit. A mechanism for pearl-necklace structures could be a combinatorial entropy term, which favours a mixture of globules and coils in a single chain. However, when a surface term is taken into account, it gives rise to a discontinuous transition. We also consider the role of surface charges on the globule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we investigate how the choice of the attenuation factor in an extended version of Katz centrality influences the centrality of the nodes in evolving communication networks. For given snapshots of a network, observed over a period of time, recently developed communicability indices aim to identify the best broadcasters and listeners (receivers) in the network. Here we explore the attenuation factor constraint, in relation to the spectral radius (the largest eigenvalue) of the network at any point in time and its computation in the case of large networks. We compare three different communicability measures: standard, exponential, and relaxed (where the spectral radius bound on the attenuation factor is relaxed and the adjacency matrix is normalised, in order to maintain the convergence of the measure). Furthermore, using a vitality-based measure of both standard and relaxed communicability indices, we look at the ways of establishing the most important individuals for broadcasting and receiving of messages related to community bridging roles. We compare those measures with the scores produced by an iterative version of the PageRank algorithm and illustrate our findings with two examples of real-life evolving networks: the MIT reality mining data set, consisting of daily communications between 106 individuals over the period of one year, a UK Twitter mentions network, constructed from the direct \emph{tweets} between 12.4k individuals during one week, and a subset the Enron email data set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scalable method for the preparation of 4,5-disubstituted thiazoles and imidazoles as distinct regioisomeric products using a modular flow microreactor has been devised. The process makes use of microfluidic reaction chips and packed immobilized-reagent columns to effect bifurcation of the reaction pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actin reorganization is a tightly regulated process that co-ordinates complex cellular events, such as cell migration, chemotaxis, phagocytosis and adhesion, but the molecular mechanisms that underlie these processes are not well understood. SCAR (suppressor of cAMP receptor)/WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homology protein] proteins are members of the conserved WASP family of cytoskeletal regulators, which play a critical role in actin dynamics by triggering Arp2/3 (actin-related protein 2/3)-dependent actin nucleation. SCAR/WAVEs are thought to be regulated by a pentameric complex which also contains Abi (Abl-interactor), Nap (Nck-associated protein), PIR121 (p53-inducible mRNA 121) and HSPC300 (haematopoietic stem progenitor cell 300), but the structural organization of the complex and the contribution of its individual components to the regulation of SCAR/WAVE function remain unclear. Additional features of SCAR/WAVE regulation are highlighted by the discovery of other interactors and distinct complexes. It is likely that the combinatorial assembly of different components of SCAR/WAVE complexes will prove to be vital for their roles at the centre of dynamic actin reorganization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the dynamical properties of certain shift spaces. To help study these properties we introduce two new classes of shifts, namely boundedly supermultiplicative (BSM) shifts and balanced shifts. It turns out that any almost specified shift is both BSM and balanced, and any balanced shift is BSM. However, as we will demonstrate, there are examples of shifts which are BSM but not balanced. We also study the measure theoretic properties of balanced shifts. We show that a shift space admits a Gibbs state if and only if it is balanced. Restricting ourselves to S-gap shifts, we relate certain dynamical properties of an S-gap shift to combinatorial properties from expansions in non-integer bases. This identification allows us to use the machinery from expansions in non-integer bases to give straightforward constructions of S -gap shifts with certain desirable properties. We show that for any q∈(0,1) there is an S-gap shift which has the specification property and entropy q . We also use this identification to address the question, for a given q∈(0,1), how many S-gap shifts exist with entropy q? For certain exceptional values of q there is a unique S-gap shift with this entropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oestrogens are critical for the display of lordosis behaviour and, in recent years, have also been shown to be involved in synaptic plasticity. In the brain, the regulation of ionotropic glutamate receptors has consequences for excitatory neurotransmission. Oestrogen regulation of the N-methyl-d-aspartate receptor subunit 2D (NR2D) has generated considerable interest as a possible molecular mechanism by which synaptic plasticity can be modulated. Since more than one isoform of the oestrogen receptor (ER) exists in mammals, it is possible that oestrogen regulation via the ERalpha and ERbeta isoforms on the NR2D oestrogen response element (ERE) is not equivalent. In the kidney fibroblast (CV1) cell line, we show that in response to 17beta-oestradiol, only ERalpha, not ERbeta, could upregulate transcription from the ERE which is in the 3' untranslated region of the NR2D gene. When this ERE is in the 5' position, neither ERalpha nor ERbeta showed transactivation capacity. Thyroid hormone receptor (TR) modulation of ER mediated induction has been shown for other ER target genes, such as the preproenkephalin and oxytocin receptor genes. Since the various TR isoforms exhibit distinct roles, we hypothesized that TR modulation of ER induction may also be isoform specific. This is indeed the case. The TRalpha1 isoform stimulated ERalpha mediated induction from the 3'-ERE whereas the TRbeta1 isoform inhibited this induction. This study shows that isoforms of both the ER and TR have different transactivation properties. Such flexible regulation and crosstalk by nuclear receptor isoforms leads to different transcriptional outcomes and the combinatorial logic may aid neuroendocrine integration.