22 resultados para Colon (Anatomia) - Cancer
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background: Animal studies suggest that prebiotics and probiotics exert protective effects against tumor development in the colon, but human data supporting this suggestion are weak. Objective: The objective was to verify whether the prebiotic concept (selective interaction with colonic flora of nondigested carbohydrates) as induced by a synbiotic preparation-oligofructose-enriched inulin (SYN1) + Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (BB12)-is able to reduce the risk of colon cancer in humans. Design: The 12-wk randomized, double-blind, placebo-controlled trial of a synbiotic food composed of the prebiotic SYN1 and probiotics LGG and BB12 was conducted in 37 colon cancer patients and 43 polypectomized patients. Fecal and blood samples were obtained before, during, and after the intervention, and colorectal biopsy samples were obtained before and after the intervention. The effect of synbiotic consumption on a battery of intermediate biomarkers for colon cancer was examined. Results: Synbiotic intervention resulted in significant changes in fecal flora: Bifidobacterium and Lactobacillus increased and Clostridium perfringens decreased. The intervention significantly reduced colorectal proliferation and the capacity of fecal water to induce necrosis in colonic cells and improve epithelial barrier function in polypectomized patients. Genotoxicity assays of colonic biopsy samples indicated a decreased exposure to genotoxins in polypectomized patients at the end of the intervention period. Synbiotic consumption prevented an increased secretion of interleukin 2 by peripheral blood mononuclear cells in the polypectomized patients and increased the production of interferon gamma in the cancer patients. Conclusions: Several colorectal cancer biomarkers can be altered favorably by synbiotic intervention.
Resumo:
Colorectal cancer (CRC) is a leading cause of cancer incidence worldwide. Lifestyle factors, especially dietary intake, affect the risk of CRC development. Suitable risk biomarkers are required in order to assess the effect that specific dietary components have on CRC risk. The relationship between dietary intake and indicators of fecal water activity has been assessed using cell and animal models as well as human studies. This review summarizes the literature on fecal water and dietary components with a view to establishing further the potential role of fecal water as a source of CRC risk biomarkers. The literature indicates that fecal water activity markers are affected by specific dietary components linked with CRC risk: red meat, saturated fats, bile acids, and fatty acids are associated with an increase in fecal water toxicity, while the converse appears to be true for calcium, probiotics, and prebiotics. However, it must be acknowledged that the study of fecal water is still in its infancy and a number of issues need to be addressed before its usefulness can be truly gauged.
Resumo:
Colorectal cancer is one of the most common cancers in Western countries. The World Health Organisation identifies diet as a critical risk factor in the development and progression of this disease and the protective role of high levels of fruit and vegetable consumption. Several studies have shown that apples contain several phenolic compounds that are potent anti-oxidants in humans. However, little is known about other beneficial properties of apple phenolics in cancer. We have used the HT29, HT115 and CaCo-2 cell lines as in vitro models to examine the effect of apple phenolics (0.01–0.1% apple extract) on key stages of colorectal carcinogenesis, namely; DNA damage (Comet assay), colonic barrier function (TER assay), cell cycle progression (DNA content assay) and invasion (Matrigel assay). Our results indicate that a crude extract of apple phenolics can protect against DNA damage, improve barrier function and inhibit invasion (p < 0.05). The anti-invasive effects of the extract were enhanced with twenty-four hour pretreatment of cells (p < 0.05). We have shown that a crude apple extract from waste, rich in phenolic compounds, beneficially influences key stages of carcinogenesis in colon cells in vitro.
Resumo:
Although it is known to be a rich source of the putative anti-cancer chemicals isothiocyanates, watercress has not been extensively studied for its cancer preventing properties. The aim of this study was to investigate the potential chemoprotective effects of crude watercress extract toward three important stages in the carcinogenic process, namely initiation, proliferation, and metastasis (invasion) using established in vitro models. HT29 cells were used to investigate the protective effects of the extract on DNA damage and the cell cycle. The extract was not genotoxic but inhibited DNA damage induced by two of the three genotoxins used, namely hydrogen peroxide and fecal water, indicating the potential to inhibit initiation. It also caused an accumulation of cells in the S phase of the cell cycle indicating (possible) cell cycle delay at this stage. The extract was shown to significantly inhibit invasion of HT115 cells through matrigel. Component analysis was also carried out in an attempt to determine the major phytochemicals present in both watercress leaves and the crude extract. In conclusion, the watercress extract proved to be significantly protective against the three stages of the carcinogenesis process investigated.
Resumo:
The hops plant (Humulus lupulus L.) is an essential ingredient in beer and contains a number of potentially bioactive prenylflavonoids, the predominant being the weakly estrogenic isoxanthohumol (Ix), which can be converted to the more strongly estrogenic 8-PN by the colonic microbiota. The aim of this study was to investigate the biological activity of 8-PN and Ix using in vitro models representing key stages of colorectal carcinogenesis, namely cell growth and viability (MTT assay), cell-cycle progression (DNA content assay), DNA damage (Comet assay), and invasion (Matrigel assay). A significant decrease in Caco-2 cell viability was noted after both 8-PN and Ix treatments at the higher doses (40 and 50 μM, respectively) although the impact on cell cycle differed between the two compounds. The decreased cell viability observed after Ix treatment was associated with a concentration-dependent increase in G2/M and an increased sub-G1 cell-cycle fraction, whereas treatment with 8-PN was associated with an elevated G0/G1 and an increased sub-G1 cell-cycle fraction. Significant antigenotoxic activity was noted at all 8-PN concentrations tested (5-40 μM). Although significant antigenotoxic activity was also noted with Ix treatment at ≤25 μM, at a higher dose, Ix itself exerted genotoxic activity. In a dose-dependent manner, both compounds inhibited HT115 cell invasion with reductions up to 52 and 46% for Ix and 8-PN, respectively, in comparison to untreated cells. This study demonstrated that both Ix and its gut microbial metabolite 8-PN exert anticancer effects on models of key stages of colon tumourigenesis.
Resumo:
Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme-induced oxidation of fat, heterocyclic amines, or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate hemeinduced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, drinking water added with nitrite to mimic the salivary nitrite content did not change the effect of hemoglobin on biochemicalmarkers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitrosocompounds level, but their fecal concentration and their nature (iron-nitrosyl) would probably not be associated with an increased risk of cancer.We thus suggest that the rat model could be relevant for study the effect of red meat on colon carcinogenesis, in spite of the lack of nitrite in the saliva of rats.
Resumo:
The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
Resumo:
Colorectal cancer is the third most prevalent cancer worldwide and the most common diet-related cancer, influenced by diets rich in red meat, low in plant foods and high in saturated fats. Observational studies have shown that fruit and vegetable intake may reduce colorectal cancer risks, although the precise bioactive components remain unclear. This review will outline the evidence for the role of polyphenols, glucosinolates and fibres against cancer progression in the gastrointestinal tract. Those bioactive compounds are considered protective agents against colon cancer, with evidence taken from epidemiological, human clinical, animal and in vitro studies. Various mechanisms of action have been postulated, such as the potential of polyphenols and glucosinolates to inhibit cancer cell growth and the actions of insoluble fibres as prebiotics and the evidence for these actions are detailed within. In addition, recent evidence suggests that polyphenols also have the potential to shift the gut ecology in a beneficial manner. Such actions of both fibre and polyphenols in the gastrointestinal tract and through interaction with gut epithelial cells may act in an additive manner to help explain why certain fruits and vegetables, but not all, act to differing extents to inhibit cancer incidence and progression. Indeed, a focus on the individual actions of such fruit and vegetable components, in particular polyphenols, glucosinolates and fibres is necessary to help explain which components are active in reducing gastrointestinal cancer risk.
Resumo:
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.
Resumo:
Bowel cancer is a growing malignancy, with more than a million annual cases reported worldwide. It has been suggested that there is microbial involvement in onset of the disease and that an altered composition has previously been observed in those suffering from the malignancy, compared to healthy counterparts. The use of prebiotic functional foods to modify the colonic microflora may provide a method of reducing genotoxic potential within the colon, whilst offering-Protective strategies in the form of metabolites such as butyrate. The following review highlights some of the studies that demonstrate the potentia role for prebiotics as protective factors against bowel cancer.
Resumo:
Both environmental and genetic factors contribute to cancers of the gastrointestinal tract including, the stomach, colon and rectum. The mechanisms associated with gastrointestinal cancer causation and prevention are largely unknown and the subject of much research. Many of the proposed mechanisms implicate the metabolic activities of the bacterial biota normally resident in the gastrointestinal tract. This review examines both the adverse and beneficial consequences of bacterial activity of the gastrointestinal tract focusing, in particularly on the stomach and large intestine. Studies on the role of the bacterial biota in colon carcinogenesis have also resulted in several useful biomarkers for use in human.
Resumo:
Studies in cell cultures and animal models provide evidence that probiotics can beneficially influence various stages in development of colon cancer including tumor initiation, promotion and metastasis. For example, oral administration of Lactobacillus and Bifidobacterium strains can prevent genotoxic damage to the colonic epithelium (considered to be an early stage of the carcinogenic process). Administration to rats of probiotics reduced the incidence of carcinogen-induced pre-cancerous lesions (aberrant crypt foci) in the colon. Furthermore a combination of Bifidobacterium longum and inulin (a prebiotic) was more effective than either treatment alone. In this latter study, the dietary treatments were given after exposure to the carcinogen, which suggests that the protective effects were being exerted at the promotional phase of carcinogenesis. L. acidophilus feeding has been shown to decrease the incidence of colon tumors in rats challenged with a carcinogen and B. longum reduced the incidence of carcinogeninduced colon, liver and mammary tumors. There is limited evidence from epidemiological studies for protective effects of products containing probiotics in humans, but a number of recent dietary intervention studies in healthy subjects and in polyp and cancer patients have yielded promising results on the basis of biomarkers of cancer risk and grade of colorectal tumors.
Resumo:
Insulin is a prebiotic food ingredient, which suppresses colon tumour growth and development in rats. In the gut lumen, it is fermented to lactic acid and short chain fatty acids (SCFA). Of these, butyrate has suppressing agent activities, but little is known concerning cellular responses to complex fermentation samples. To investigate the effects of fermentation products of insulin on cellular responses related to colon carcinogenesis. Fermentations were performed in anaerobic batch cultures or in a three-stage fermentation model that simulates conditions in colon-segments (proximal, transverse, distal). Substrate was insulin enriched with oligofructose (Raftilose® Synergy1), fermented with probiotics (Bifidobacterium lactis Bb12, Lactobacillus rhamnosus GG), and/or faecal inocula. HT29 or CaCo-2 cells were incubated with supernatants of the fermented samples (2.5%-25% v/v, 24-72 hours). Cellular parameters of survival, differentiation, tumour progression, and invasive growth were determined. Fermentation supernatants derived from probiotics and Synergy1 were more effective than with glucose. The additional fermentation with faecal slurries produced supernatants with lower toxicity, higher SCFA contents, and distinct cellular functions. The supernatant derived from the gut model vessel representing the distal colon, was most effective for all parameters, probably on account of higher butyrate-concentrations. Biological effects of insulin upon colon cells may be mediated not only by growth stimulation of the lactic acid-producing bacteria and/or production of butyrate, but also by other bacteria and products of the gut lumen. These newly reported properties of the supernatants to inhibit growth and metastases in colon tumour cells are important mechanisms of tumour suppression.
Resumo:
Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 mu g/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade. (c) 2007 Wiley-Liss, Inc.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.