64 resultados para Coastal hydrodynamic
em CentAUR: Central Archive University of Reading - UK
Resumo:
Accuracy and mesh generation are key issues for the high-resolution hydrodynamic modelling of the whole Great Barrier Reef. Our objective is to generate suitable unstructured grids that can resolve topological and dynamical features like tidal jets and recirculation eddies in the wake of islands. A new strategy is suggested to refine the mesh in areas of interest taking into account the bathymetric field and an approximated distance to islands and reefs. Such a distance is obtained by solving an elliptic differential operator, with specific boundary conditions. Meshes produced illustrate both the validity and the efficiency of the adaptive strategy. Selection of refinement and geometrical parameters is discussed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter required. Calibration is also performed for the Soulsby-van Rijn sediment transport equations. The data used for assimilation purposes comprises waterlines derived from SAR imagery covering the entire period of the model run, and swath bathymetry data collected by a ship-borne survey for one date towards the end of the model run. A LiDAR survey of the entire bay carried out in November 2005 is used for validation purposes. The comparison of the predictive ability of the model alone with the model-forecast-assimilation system demonstrates that using data assimilation significantly improves the forecast skill. An investigation of the assimilation of the swath bathymetry as well as the waterlines demonstrates that the overall improvement is initially large, but decreases over time as the bathymetry evolves away from that observed by the survey. The result of combining the calibration runs into a pseudo-ensemble provides a higher skill score than for a single optimized model run. A brief comparison of the Optimal Interpolation assimilation method with the 3D-Var method shows that the two schemes give similar results.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.
Resumo:
It is often assumed that ventilation of the atmospheric boundary layer is weak in the absence of fronts, but is this always true? In this paper we investigate the processes responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May 2005 using the UK Met Office Unified Model. Pollution sources are represented by the constant emission of a passive tracer everywhere over land. The ventilation processes observed include shallow convection, turbulent mixing followed by large-scale ascent, a sea breeze circulation and coastal outflow. Vertical distributions of tracer are validated qualitatively with AMPEP (Aircraft Measurement of chemical Processing Export fluxes of Pollutants over the UK) CO aircraft measurements and are shown to agree impressively well. Budget calculations of tracers are performed in order to determine the relative importance of these ventilation processes. Coastal outflow and the sea breeze circulation were found to ventilate 26% of the boundary layer tracer by sunset of which 2% was above 2 km. A combination of coastal outflow, the sea breeze circulation, turbulent mixing and large-scale ascent ventilated 46% of the boundary layer tracer, of which 10% was above 2 km. Finally, coastal outflow, the sea breeze circulation, turbulent mixing, large-scale ascent and shallow convection together ventilated 52% of the tracer into the free troposphere, of which 26% was above 2 km. Hence this study shows that significant ventilation of the boundary layer can occur in the absence of fronts (and thus during high-pressure events). Turbulent mixing and convection processes can double the amount of pollution ventilated from the boundary layer.
Resumo:
Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries.
Resumo:
Holocene silts (salt marshes) and highest intertidal-supratidal peats are superbly exposed on a 15 kin coastal transect which reveals two laterally extensive units of annually banded silts (Beds 3, 7) associated with three transgressive-regressive silt-peat cycles (early sixth-early fourth millennium BC). Bed 3 in places is concordantly and gradationally related to peats above and below, but in others transgresses older strata. Bed 7 also grades up into peat, but everywhere overlies a discordance. The banding in Bed 3 at three main and two minor sites was resolved and characterized texturally at high-resolution (2.5/5 mm contiguous slices) using laser granulometry (LS230 with PIDS) and a comprehensive scheme of data-assessment. Most of Bed 3 formed very rapidly, at peak values of several tens of millimetres annually, in accordance with modelled effects of sea-level fluctuations on mature marshes (bed concordant and gradational) and on marshes growing up after coastal erosion and retreat (bed with discordant base). Using data from the modern Severn Estuary, the textural contrast within bands, and its variation between bands, points to a variable but overall milder mid-Holocene climate than today. The inter-annual variability affected marsh dynamics, as shown by the behaviour of the finely divided plant tissues present. Given local calibration, the methodology is applicable to other tidal systems with banded silts in Britain and mainland northwest Europe. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Although numerous field studies have evaluated flow and transport processes in salt marsh channels, the overall role of channels in delivering and removing material from salt marsh platforms is still poorly characterised. In this paper, we consider this issue based on a numerical hydrodynamic model for a prototype marsh system and on a field survey of the cross-sectional geometry of a marsh channel network. Results of the numerical simulations indicate that the channel transfers approximately three times the volume of water that would be estimated from mass balance considerations alone. Marsh platform roughness exerts a significant influence on the partitioning of discharge between the channel and the marsh platform edge, alters flow patterns on the marsh platform due to its effects on channel-to-platform transfer and also controls the timing of peak discharge relative to marsh-edge overtopping. Although peak channel discharges and velocities are associated with the flood tide and marsh inundation, a larger volume of water is transferred by the channel during ebb flows, a portion of which transfer takes place after the tidal height is below the marsh platform. Detailed surveys of the marsh channels crossing a series of transects at Upper Stiffkey Marsh, north Norfolk, England, show that the total channel cross-sectional area increases linearly with catchment area in the inner part of the marsh, which is consistent with the increase in shoreward tidal prism removed by the channels. Toward the marsh edge, however, a deficit in the total cross-sectional area develops, suggesting that discharge partitioning between the marsh channels and the marsh platform edge may also be expressed in the morphology of marsh channel systems.
Resumo:
This paper describes the results and conclusions of the INCA (Integrated Nitrogen Model for European CAtchments) project and sets the findings in the context of the ELOISE (European Land-Ocean Interaction Studies) programme. The INCA project was concerned with the development of a generic model of the major factors and processes controlling nitrogen dynamics in European river systems, thereby providing a tool (a) to aid the scientific understanding of nitrogen transport and retention in catchments and (b) for river-basin management and policy-making. The findings of the study highlight the heterogeneity of the factors and processes controlling nitrogen dynamics in freshwater systems. Nonetheless, the INCA model was able to simulate the in-stream nitrogen concentrations and fluxes observed at annual and seasonal timescales in Arctic, Continental and Maritime-Temperate regimes. This result suggests that the data requirements and structural complexity of the INCA model are appropriate to simulate nitrogen fluxes across a wide range of European freshwater environments. This is a major requirement for the production of coupled fiver-estuary-coastal shelf models for the management of our aquatic environment. With regard to river-basin management, to achieve an efficient reduction in nutrient fluxes from the land to the estuarine and coastal zone, the model simulations suggest that management options must be adaptable to the prevailing environmental and socio-economic factors in individual catchments: 'Blanket approaches' to environmental policy appear too simple. (c) 2004 Elsevier B.V. All rights reserved.