110 resultados para Cluster-Tree WSN
em CentAUR: Central Archive University of Reading - UK
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.
Resumo:
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind- pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paran alpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006m. The average number of effective pollen donors was estimated as 12.6. Mother- trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother- trees ranged from 0.35 to 291m ( with an average of 83m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is longdistance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.
Resumo:
The long-term variability of the Siberian High, the dominant Northern Hemisphere anticyclone during winter, is largely unknown. To investigate how this feature varied prior to the instrumental record, we present a reconstruction of a Dec-Feb Siberian High (SH) index based on Eurasian and North American tree rings. Spanning 1599-1980, it provides information on SH variability over the past four centuries. A decline in the instrumental SH index since the late 1970s, related to Eurasian warming, is the most striking feature over the past four hundred years. It is associated with a highly significant (p < 0.0001) step change in 1989. Significant similar to 3-4 yr spectral peaks in the reconstruction fall within the range of variability of the East Asian winter monsoon (which has also declined recently) and lend further support to proposed relationships between these largescale features of the climate system.
Resumo:
Given the non-monotonic form of the radiocarbon calibration curve, the precision of single C-14 dates on the calendar timescale will always be limited. One way around this limitation is through comparison of time-series, which should exhibit the same irregular patterning as the calibration curve. This approach can be employed most directly in the case of wood samples with many years growth present (but not able to be dated by dendrochronology), where the tree-ring series of unknown date can be compared against the similarly constructed C-14 calibration curve built from known-age wood. This process of curve-fitting has come to be called "wiggle-matching." In this paper, we look at the requirements for getting good precision by this method: sequence length, sampling frequency, and measurement precision. We also look at 3 case studies: one a piece of wood which has been independently dendrochronologically dated, and two others of unknown age relating to archaeological activity at Silchester, UK (Roman) and Miletos, Anatolia (relating to the volcanic eruption at Thera).
Resumo:
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.
Resumo:
This article for the first time considers all extant ancient evidence for the habit of carving inscriptions on tree trunks. It emerges a picture that bears remarkable resemblances to what is known from the habit of graffiti writing (with important addition to that latter field to be derived from the findings), for individual and technical texts.