41 resultados para Clover as feed
em CentAUR: Central Archive University of Reading - UK
Resumo:
White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Effective use and recycling of manures together with occasional and judicious use of supplementary fertilizing materials forms the basis for management of phosphorus (P) and potassium (K) within organic farming systems. Replicated field trials were established at three sites across the UK to compare the supply of P and K to grass-clover swards cut for silage from a range of fertilizing materials, and to assess the usefulness of routine soil tests for P and K in organic farming systems. None of the fertilizing materials (farmyard manure, rock phosphate, Kali vinasse, volcanic tuff) significantly increased silage yields, nor was P offtake increased. However, farmyard manure and Kali vinasse proved effective sources of K to grass and clover in the short to medium term. Available P (measured as Olsen-P) showed no clear relationship with crop P offtake in these trials. In contrast, available K (measured by ammonium nitrate extraction) proved a useful measurement to predict K availability to crops and support K management decisions.
Resumo:
An understanding of the primary pathways of plant uptake of organic pollutants is important to enable the risks from crops grown on contaminated soils to be assessed. A series of experiments were undertaken to quantify the importance of the pathways of contamination and the Subsequent transport within the plant using white clover plants grown in solution culture. Root uptake was primarily an absorption process, but a component of the contamination was a result of the transpiration flux to the shoot for higher Solubility compounds. The root contamination can be easily predicted using a simple relationship with K-OW, although if a composition model was used based on lipid content, a significant under prediction of the contamination was observed. Shoot uptake was driven by the transpiration stream flux which was related to the solubility of the individual PAH rather than the K-OW. However, the experiment was over a short duration, 6 days, and models based on K-OW may be better for crops grown in the field where the vegetation will approach equilibrium and transpiration cannot easily be measured, A significant fraction of the shoot contamination resulted from aerial deposition derived from volatilized PAH. This pathway was more significant for compounds approaching log K-OA > 9 and log K-AW < -3. The shoot uptake pathways need further investigation to enable them to be modeled separately, There was no evidence of significant systemic transport of the PAR so transfer outside the transpiration stream is likely to be limited.
Resumo:
This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenne L. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.
Resumo:
The respiratory emission of CO2 from roots is frequently proposed as an attractant that allows soil-dwelling insects to locate host plant roots, but this role has recently become less certain. CO2 is emitted from many sources other than roots, so does not necessarily indicate the presence of host plants, and because of the high density of roots in the upper soil layers, spatial gradients may not always be perceptible by soil-dwelling insects. The role of CO2 in host location was investigated using the clover root weevil Sitona lepidus Gyllenhall and its host plant white clover (Trifolium repens L.) as a model system. Rhizochamber experiments showed that CO2 concentrations were approximately 1000 ppm around the roots of white clover, but significantly decreased with increasing distance from roots. In behavioural experiments, no evidence was found for any attraction by S. lepidus larvae to point emissions of CO2, regardless of emission rates. Fewer than 15% of larvae were attracted to point emissions of CO2, compared with a control response of 17%. However, fractal analysis of movement paths in constant CO2 concentrations demonstrated that searching by S. lepidus larvae significantly intensified when they experienced CO2 concentrations similar to those found around the roots of white clover (i.e. 1000 ppm). It is suggested that respiratory emissions of CO2 may act as a 'search trigger' for S. lepidus, whereby it induces larvae to search a smaller area more intensively, in order to detect location cues that are more specific to their host plant.
Resumo:
White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The objective of the study was to determine if there were adverse effects on animal health and performance when a range of ruminant animals species were fed at least 10 times the maximum permitted European Union (EU) selenium (Se) dietary inclusion rate (0.568 mg Se/kg DM) in the form of selenium enriched yeast (SY) derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060. In a series of studies, dairy cows, beef cattle, calves and lambs were offered either a control diet which contained no Se supplement or a treatment diet which contained the same basal feed ingredients plus a SY supplement which increased total dietary Se from 0.15 to 6.25, 0.20 to 6.74, 0.15 to 5.86 and 0.14 to 6.63 mg Se/kg DM, respectively. The inclusion of the SY supplement (P < 0.001) increased whole blood Se concentrations, reaching maximum mean values of 716, 1,505, 1,377, and 724 ng Se/mL for dairy cattle, beef cattle, calves and lambs, respectively. Selenomethionine accounted for 10% of total whole blood Se in control animals whereas the proportion in SY animals ranged between 40 and 75%. Glutathione peroxidase (EC 1.11.1.9) activity was higher (P < 0.05) in SY animals when compared with controls. A range of other biochemical and hematological parameters were assessed, but few differences of biological significance were established between treatments groups. There were no differences between treatment groups within each species with regard to animal physical performance or overall animal health. It was concluded that there were no adverse effects on animal health, performance and voluntary feed intake to the administration of at least ten times the EU maximum, or approximately twenty times the US FDA permitted concentration of dietary Se in the form of SY derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060.
Resumo:
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.
Resumo:
A method is proposed to determine the extent of degradation in the rumen involving a two-stage mathematical modeling process. In the first stage, a statistical model shifts (or maps) the gas accumulation profile obtained using a fecal inoculum to a ruminal gas profile. Then, a kinetic model determines the extent of degradation in the rumen from the shifted profile. The kinetic model is presented as a generalized mathematical function, allowing any one of a number of alternative equation forms to be selected. This method might allow the gas production technique to become an approach for determining extent of degradation in the rumen, decreasing the need for surgically modified animals while still maintaining the link with the animal. Further research is needed before the proposed methodology can be used as a standard method across a range of feeds.
Resumo:
As the ideal method of assessing the nutritive value of a feedstuff, namely offering it to the appropriate class of animal and recording the production response obtained, is neither practical nor cost effective a range of feed evaluation techniques have been developed. Each of these balances some degree of compromise with the practical situation against data generation. However, due to the impact of animal-feed interactions over and above that of feed composition, the target animal remains the ultimate arbitrator of nutritional value. In this review current in vitro feed evaluation techniques are examined according to the degree of animal-feed interaction. Chemical analysis provides absolute values and therefore differs from the majority of in vitro methods that simply rank feeds. However, with no host animal involvement, estimates of nutritional value are inferred by statistical association. In addition given the costs involved, the practical value of many analyses conducted should be reviewed. The in sacco technique has made a substantial contribution to both understanding rumen microbial degradative processes and the rapid evaluation of feeds, especially in developing countries. However, the numerous shortfalls of the technique, common to many in vitro methods, the desire to eliminate the use of surgically modified animals for routine feed evaluation, paralleled with improvements in in vitro techniques, will see this technique increasingly replaced. The majority of in vitro systems use substrate disappearance to assess degradation, however, this provides no information regarding the quantity of derived end-products available to the host animal. As measurement of volatile fatty acids or microbial biomass production greatly increases analytical costs, fermentation gas release, a simple and non-destructive measurement, has been used as an alternative. However, as gas release alone is of little use, gas-based systems, where both degradation and fermentation gas release are measured simultaneously, are attracting considerable interest. Alternative microbial inocula are being considered, as is the potential of using multi-enzyme systems to examine degradation dynamics. It is concluded that while chemical analysis will continue to form an indispensable part of feed evaluation, enhanced use will be made of increasingly complex in vitro systems. It is vital, however, the function and limitations of each methodology are fully understood and that the temptation to over-interpret the data is avoided so as to draw the appropriate conclusions. With careful selection and correct application in vitro systems offer powerful research tools with which to evaluate feedstuffs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
in vitro studies were conducted on five sorghum genotypes developed for the dry tropical highland climate of Kenya and which can be fed to ruminants fresh or as silage. The five sorghum genotypes consisted of two normal white mid-rib (WMR) genotypes, coded E1291 and E65181, and three brown-midrib (BMR) genotypes, coded Lan-5, Lan-6 and Lan-12. Whole mature plants (herbage plus grain) and silage made from E 1291 were used in the study. An in vitro manual gas production technique was used to compare the nutritive characteristics of these genotypes for ruminants. These sorghums differed significantly in true organic matter degraded (OMDeg), which ranged from 520 to 678 g/kg after 24 h incubation and 706 to 805 g/kg after 72 h incubation. All the BMR sorghums had a higher degradability than the WMR genotype, E6518, and the silage, with Lan-5 having the highest degradability. Methane produced per g OMDeg ranged from 40.6 to 46.4 mL/g after 24 h incubation and from 53.1 to 62.6 mL/g after 72 h incubation. It was similar for all genotypes after 24 h incubation but Lan-12 had the highest methane production after 72 h incubation. After 24 h and 72 h incubation all the genotypes produced a similar total amount of gas per OMDeg (293 to 309 and 357 to 385 mL/g, respectively) with similar total short chain fatty acid concentrations in the liquid digesta (7.8 to 10.4 and 9.5 to 10.3 mmol, respectively) and acetate to propionate ratios of 2.16 to 2.49 and 2.35 to 2.87, respectively. The sorghums showed great potential as ruminant feed sources in the region.