17 resultados para Cloud Computing, OpenStack, StackOps, Virtualizzazione, Infrastructure as a Service, piattaforme cloud
em CentAUR: Central Archive University of Reading - UK
Resumo:
The creation of value is admittedly a critical task for marketers regardless of industry. This paper focuses on a type of value that has traditionally been perceived as irrelevant to industrial markets and argues that brand value facilitates the progression from goods and services value to relationship value. To address the limited amount of research on B2B branding from the suppliers' point of view, we complement insights gained from a literature review with ten exploratory interviews with B2B supplier managers, and develop a framework of brand value applicable to industrial markets. This identifies both the functional (i.e., quality, technology, capacity, infrastructure, after sales service, capabilities, reliability, innovation) and emotional qualities (i.e., risk reduction, reassurance, trust) important for the development of industrial brand equity. Situational (e.g. nature of the purchase) and environmental factors (e.g. the economic situation) affecting suppliers' perceptions of the importance of brand in a B2B context and the role of functional versus emotional brand qualities are discussed. The value of the brand as a driver for the development of business to business relationships is also highlighted. The framework provides a basis for B2B practitioners to build their brands in such a way as to make a functional as well as an emotional connection with buyers that is more likely to lead to a supplier–buyer relationship.
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
The extensive use of cloud computing in educational institutes around the world brings unique challenges for universities. Some of these challenges are due to clear differences between Europe and Middle East universities. These differences stem from the natural variation between people. Cloud computing has created a new concept to deal with software services and hardware infrastructure. Some benefits are immediately gained, for instance, to allow students to share their information easily and to discover new experiences of the education system. However, this introduces more challenges, such as security and configuration of resources in shared environments. Educational institutes cannot escape from these challenges. Yet some differences occur between universities which use cloud computing as an educational tool or a form of social connection. This paper discusses some benefits and limitations of using cloud computing and major differences in using cloud computing at universities in Europe and the Middle East, based on the social perspective, security and economics concepts, and personal responsibility.
Resumo:
Many producers of geographic information are now disseminating their data using open web service protocols, notably those published by the Open Geospatial Consortium. There are many challenges inherent in running robust and reliable services at reasonable cost. Cloud computing provides a new kind of scalable infrastructure that could address many of these challenges. In this study we implement a Web Map Service for raster imagery within the Google App Engine environment. We discuss the challenges of developing GIS applications within this framework and the performance characteristics of the implementation. Results show that the application scales well to multiple simultaneous users and performance will be adequate for many applications, although concerns remain over issues such as latency spikes. We discuss the feasibility of implementing services within the free usage quotas of Google App Engine and the possibility of extending the approaches in this paper to other GIS applications.
Resumo:
Purpose: This paper aims to design an evaluation method that enables an organization to assess its current IT landscape and provide readiness assessment prior to Software as a Service (SaaS) adoption. Design/methodology/approach: The research employs a mixed of quantitative and qualitative approaches for conducting an IT application assessment. Quantitative data such as end user’s feedback on the IT applications contribute to the technical impact on efficiency and productivity. Qualitative data such as business domain, business services and IT application cost drivers are used to determine the business value of the IT applications in an organization. Findings: The assessment of IT applications leads to decisions on suitability of each IT application that can be migrated to cloud environment. Research limitations/implications: The evaluation of how a particular IT application impacts on a business service is done based on the logical interpretation. Data mining method is suggested in order to derive the patterns of the IT application capabilities. Practical implications: This method has been applied in a local council in UK. This helps the council to decide the future status of the IT applications for cost saving purpose.
The Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions
Resumo:
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft’s cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Resumo:
Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed.
Resumo:
We present an overview of the MELODIES project, which is developing new data-intensive environmental services based on data from Earth Observation satellites, government databases, national and European agencies and more. We focus here on the capabilities and benefits of the project’s “technical platform”, which applies cloud computing and Linked Data technologies to enable the development of these services, providing flexibility and scalability.
Resumo:
The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
Cloud optical depth is one of the most poorly observed climate variables. The new “cloud mode” capability in the Aerosol Robotic Network (AERONET) will inexpensively yet dramatically increase cloud optical depth observations in both number and accuracy. Cloud mode optical depth retrievals from AERONET were evaluated at the Atmospheric Radiation Measurement program’s Oklahoma site in sky conditions ranging from broken clouds to overcast. For overcast cases, the 1.5 min average AERONET cloud mode optical depths agreed to within 15% of those from a standard ground‐based flux method. For broken cloud cases, AERONET retrievals also captured rapid variations detected by the microwave radiometer. For 3 year climatology derived from all nonprecipitating clouds, AERONET monthly mean cloud optical depths are generally larger than cloud radar retrievals because of the current cloud mode observation strategy that is biased toward measurements of optically thick clouds. This study has demonstrated a new way to enhance the existing AERONET infrastructure to observe cloud optical properties on a global scale.
Resumo:
This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data. It effectively widens the active–passive retrieved cross-section (RXS) of cloud properties, thereby enabling computation of radiative fluxes and radiances that can be compared with measured values in an attempt to perform radiative closure experiments that aim to assess the RXS. For this introductory study, A-train data were used to verify the scene-construction algorithm and only 1D radiative transfer calculations were performed. The construction algorithm fills off-RXS recipient pixels by computing sums of squared differences (a cost function F) between their spectral radiances and those of potential donor pixels/columns on the RXS. Of the RXS pixels with F lower than a certain value, the one with the smallest Euclidean distance to the recipient pixel is designated as the donor, and its retrieved cloud properties and other attributes such as 1D radiative heating rates are consigned to the recipient. It is shown that both the RXS itself and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery can be reconstructed extremely well using just visible and thermal infrared channels. Suitable donors usually lie within 10 km of the recipient. RXSs and their associated radiative heating profiles are reconstructed best for extensive planar clouds and less reliably for broken convective clouds. Domain-average 1D broadband radiative fluxes at the top of theatmosphere(TOA)for (21 km)2 domains constructed from MODIS, CloudSat andCloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data agree well with coincidental values derived from Clouds and the Earth’s Radiant Energy System (CERES) radiances: differences betweenmodelled and measured reflected shortwave fluxes are within±10Wm−2 for∼35% of the several hundred domains constructed for eight orbits. Correspondingly, for outgoing longwave radiation∼65% are within ±10Wm−2.
Resumo:
The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.
Resumo:
Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals.