6 resultados para Clinical Evaluation
em CentAUR: Central Archive University of Reading - UK
Resumo:
Pharmacovigilance, the monitoring of adverse events (AEs), is an integral part in the clinical evaluation of a new drug. Until recently, attempts to relate the incidence of AEs to putative causes have been restricted to the evaluation of simple demographic and environmental factors. The advent of large-scale genotyping, however, provides an opportunity to look for associations between AEs and genetic markers, such as single nucleotides polymorphisms (SNPs). It is envisaged that a very large number of SNPs, possibly over 500 000, will be used in pharmacovigilance in an attempt to identify any genetic difference between patients who have experienced an AE and those who have not. We propose a sequential genome-wide association test for analysing AEs as they arise, allowing evidence-based decision-making at the earliest opportunity. This gives us the capability of quickly establishing whether there is a group of patients at high-risk of an AE based upon their DNA. Our method provides a valid test which takes account of linkage disequilibrium and allows for the sequential nature of the procedure. The method is more powerful than using a correction, such as idák, that assumes that the tests are independent. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
The aim of a phase H clinical trial is to decide whether or not to develop an experimental therapy further through phase III clinical evaluation. In this paper, we present a Bayesian approach to the phase H trial, although we assume that subsequent phase III clinical trials will hat,e standard frequentist analyses. The decision whether to conduct the phase III trial is based on the posterior predictive probability of a significant result being obtained. This fusion of Bayesian and frequentist techniques accepts the current paradigm for expressing objective evidence of therapeutic value, while optimizing the form of the phase II investigation that leads to it. By using prior information, we can assess whether a phase II study is needed at all, and how much or what sort of evidence is required. The proposed approach is illustrated by the design of a phase II clinical trial of a multi-drug resistance modulator used in combination with standard chemotherapy in the treatment of metastatic breast cancer. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
There is growing interest, especially for trials in stroke, in combining multiple endpoints in a single clinical evaluation of an experimental treatment. The endpoints might be repeated evaluations of the same characteristic or alternative measures of progress on different scales. Often they will be binary or ordinal, and those are the cases studied here. In this paper we take a direct approach to combining the univariate score statistics for comparing treatments with respect to each endpoint. The correlations between the score statistics are derived and used to allow a valid combined score test to be applied. A sample size formula is deduced and application in sequential designs is discussed. The method is compared with an alternative approach based on generalized estimating equations in an illustrative analysis and replicated simulations, and the advantages and disadvantages of the two approaches are discussed.
Resumo:
This paper, the second in a series of three papers concerned with the statistical aspects of interim analyses in clinical trials, is concerned with stopping rules in phase II clinical trials. Phase II trials are generally small-scale studies, and may include one or more experimental treatments with or without a control. A common feature is that the results primarily determine the course of further clinical evaluation of a treatment rather than providing definitive evidence of treatment efficacy. This means that there is more flexibility available in the design and analysis of such studies than in phase III trials. This has led to a range of different approaches being taken to the statistical design of stopping rules for such trials. This paper briefly describes and compares the different approaches. In most cases the stopping rules can be described and implemented easily without knowledge of the detailed statistical and computational methods used to obtain the rules.
Resumo:
Objective: The construct of 'clinical perfectionism' has been developed in response to criticisms that other approaches have failed to yield advances in the treatment of the type of self-oriented perfectionism that poses a clinical problem. The primary aim of this study was to conduct a preliminary investigation into the efficacy of a theory-driven, cognitive-behavioural intervention for 'clinical perfectionism'. Design. A multiple baseline single case series design was used. Method: A specific, 10-session cognitive-behavioural intervention to address clinical perfectionism in eating disorders was adapted to allow its use in nine patients referred with a range of axis I disorders and clinical perfectionism. Results: The intervention led to clinically significant improvements in self-referential perfectionism from pretreatment to follow-up for six of the nine participants on two perfectionism measures and for three of the nine participants on the measure of clinical perfectionism. Statistically significant improvements from pre- to post-intervention for the group as a whole were found on all three measures. The improvements were maintained at follow-up. Conclusions: The finding that clinical perfectionism is improved in the majority of participants is particularly encouraging given that perfectionism has traditionally been viewed as a personality characteristic resistant to change. These preliminary findings warrant replication in a larger study.
Resumo:
When competing strategies for development programs, clinical trial designs, or data analysis methods exist, the alternatives need to be evaluated in a systematic way to facilitate informed decision making. Here we describe a refinement of the recently proposed clinical scenario evaluation framework for the assessment of competing strategies. The refinement is achieved by subdividing key elements previously proposed into new categories, distinguishing between quantities that can be estimated from preexisting data and those that cannot and between aspects under the control of the decision maker from those that are determined by external constraints. The refined framework is illustrated by an application to a design project for an adaptive seamless design for a clinical trial in progressive multiple sclerosis.